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1  |  INTRODUC TION

Phenotypes display a spectrum of sensitivities to environmental 
cues. At one extreme are highly plastic traits, for which specific 
environmental or physiological signals induce alternative optimal 
phenotypes. At the other extreme are invariant, that is, canalized 
or robust, traits for which the influence of the external environment 

has been attenuated. Natural selection can establish setpoints 
along this spectrum of environmental sensitivity to optimize pop-
ulations to specific environmental regimes (Ancel, 1999; Ehrenreich 
& Pfennig, 2015; Palacio-López et al., 2015; Stewart et al., 2012).

Here, we address questions concerning phenotypes that fall at 
one end of the spectrum—canalized traits—and how they evolve. 
First brought to our attention by Waddington (1942), canalization 
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Abstract
Canalization involves mutational robustness, the lack of phenotypic change as a re-
sult of genetic mutations. Given the large divergence in phenotype across species, 
understanding the relationship between high robustness and evolvability has been of 
interest to both theorists and experimentalists. Although canalization was originally 
proposed in the context of multicellular organisms, the effect of multicellularity and 
other classes of hierarchical organization on evolvability has not been considered by 
theoreticians. We address this issue using a Boolean population model with explicit 
representation of an environment in which individuals with explicit genotype and a 
hierarchical phenotype representing multicellularity evolve. Robustness is described 
by a single real number between zero and one which emerges from the genotype–
phenotype map. We find that high robustness is favoured in constant environments, 
and lower robustness is favoured after environmental change. Multicellularity and 
hierarchical organization severely constrain robustness: peak evolvability occurs at 
an absolute level of robustness of about 0.99 compared with values of about 0.5 in 
a classical neutral network model. These constraints result in a sharp peak of evolv-
ability in which the maximum is set by the fact that the fixation of adaptive mutations 
becomes more improbable as robustness decreases. When robustness is put under 
genetic control, robustness levels leading to maximum evolvability are selected for, 
but maximal relative fitness appears to require recombination.
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involves not only the attenuation of environmental variability, but 
also insensitivity to genetic mutation and developmental noise. 
Canalization is widely recognized as a general feature in develop-
mental processes, due both to the structural properties of devel-
opmental networks as well as to the evolution of traits governed by 
stabilizing selection (Barkai & Leibler, 1997; Félix & Barkoulas, 2015; 
Meiklejohn & Hartl, 2002; Siegal & Bergman, 2002). Recent studies 
investigating gene regulatory networks have also found support 
for Waddington's classical idea of canalization. It has been shown 
that gene expression is buffered against perturbations by inter-
actions between genes in trans that give rise to attractor states 
in the epigenetic landscape (Huang,  2012; Manu et al.,  2009a, 
2009b; Moris et al., 2016). Similarly, gene expression is buffered 
by interactions in cis within genes because the large noncoding 
regulatory regions buffer the effect of single base changes (Barr 
et al., 2019). Canalization in cis is a form of ‘concentration’, in the 
mathematical sense. Concentration occurs when a mathemati-
cal function of many random variables with large variance has a 
small variance (cf. Talagrand  [1995], Gromov  [2007], Boucheron 
et al. [2013]). In the evolutionary context, the key property of ca-
nalization is its effect on reducing or suppressing the phenotypic 
consequences of mutation, a property frequently referred to as 
‘genetic robustness’.

The high reproducibility of a strongly canalized trait in the 
presence of genetic robustness attenuates heritable phenotypic 
variation, thus reducing the rate of adaptation (Fisher,  1930). Yet, 
canalized traits evolve adaptively over phylogenetic time. Scutellar 
bristle number in Drosophila, for example, is not only highly canalized 
(Rendel,  1959; Wheeler,  1987), but also differs characteristically 
within family Drosophilidae (Wheeler, 1987), making it a useful tax-
onomic feature in species classification. Under what circumstances, 
then, can canalized traits evolve? Early conceptual models invoke 
gene–environmental interactions upon specific environmental stim-
uli to release phenotypic variation on which natural selection can 
act (Simpson, 1953; Waddington, 1942, 1953). This process involves 
environmental factors interacting with existing genetic variation 
to create novel phenotypes (Gibson & Dworkin,  2004; Gibson & 
Hogness, 1996; Scharloo, 1991).

Mutation can also release otherwise suppressed phenotypic 
variation. The number of vibrissae is typically 19 in the house mouse, 
but in Tabby mutants, this number can vary (Dun & Fraser, 1958). 
Similarly in Drosophila, the number of scutellar bristles varies in a 
scute mutant but not wild type (Rendel, 1965). Release of phenotypic 
variation is not restricted to mutation in genetic components regulat-
ing a specific phenotype. There may also be genetic factors that act 
as global regulators of robustness, sometimes called ‘evolutionary 
capacitors’. Rutherford and Lindquist (1998) proposed that Hsp90, a 
chaperone involved in protein folding, is one such factor, buffering 
phenotypic variation under non-stressed environmental conditions, 
but releasing this variation at opportune times in response to spe-
cific environmental stressors (Gibson, 2009; Masel, 2005; Masel & 
Siegal, 2009; Paaby & Rockman, 2014). Additional regulators have 
been found in a genetic screen in yeast (Levy & Siegal, 2008). But 

evidence for the existence of genetic capacitors that contribute to 
adaptation remains under debate (Levy & Siegal, 2008; Masel, 2005; 
Masel & Siegal, 2009; Meiklejohn & Hartl, 2002). The strongest sup-
port for this hypothesis comes from a study that found directionality 
of eye size change upon Hsp90 induction in the cavefish, a pheno-
type that is otherwise stabilized by Hsp90 in the ancestral surface 
populations (Rohner et al., 2013).

The largest gap in our understanding of how canalized traits 
evolve, however, does not revolve around uncertainly about the 
specific molecular mechanisms of canalization that contribute to 
adaptation, such as Hsp90. Rather, it revolves around theoretical 
issues: the degree of robustness that can be maintained in the pop-
ulation under stabilizing selection, the extent to which a lowering of 
robustness is required when adapting to a novel environment and 
finally because robustness is itself a property of phenotype, the rep-
resentation of phenotype in theoretical models becomes an issue 
as well. Below, we summarize key findings about robustness against 
mutation.

In contrast to the intuitive appeal of the idea that release of 
cryptic variation through reduced robustness facilitates adaptation, 
A. Wagner has argued that robustness can facilitate adaptation 
(Wagner, 2008, 2012). The central idea is that of a genotype net-
work (originally referred to as a ‘neutral network’), in which the mea-
sure of evolvability is the accessibility of new phenotypes from all 
genotypes connected by phenotypically neutral mutations. In these 
studies, the picture of the genotype–phenotype map was inspired 
by the secondary structure of RNA as determined from its sequence. 
Experimental support for this picture has been adduced from stud-
ies of both RNA (Hayden et al., 2011) and protein (Bloom et al., 2006) 
structure and function.

These ideas were formulated in a mathematically precise man-
ner in a study that abstracted the key features of a neutral network 
into a population genetics picture in which the statistical properties 
of the fitness landscape could be described by a small number of 
parameters (Draghi et al., 2010). A key idea is that one optimal phe-
notype is maintained in the population; in a given environment, all 
alternative phenotypes are assumed to be lethal or highly deleteri-
ous. Robustness is the probability that a neighbouring genotype will 
be neutral. In the face of a new environment, defined by the authors 
as the random selection of a new optimal phenotype, adaptation is 
achieved by positive selection acting on new mutant genotypes that 
are one step away from particular (i.e. not all) genotypes in the neu-
tral network, thus providing epistasis between new mutations and 
pre-existing alleles in the neutral network to create novel pheno-
types. Evolvability here is defined in terms of the expected waiting 
time for an adaptive mutation considered as a function of robust-
ness, which can be varied at will in the model. A major strength of 
this analysis is that by imposing temporal continuity on the evolu-
tionary process, the authors obtain a Fokker–Planck equation with 
exact solutions, from which the expected adaptation time can be 
obtained in closed form.

Draghi et al. (2010) showed that if all phenotypes were acces-
sible by a single mutation, evolvability was indeed a monotonically 
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decreasing function of robustness, but that in the more realistic 
case where some novel phenotypes could only be reached by mul-
tiple mutations, evolvability was maximized at intermediate robust-
ness levels. The authors quantified robustness by q, the probability 
that a mutation was phenotypically neutral. The generic finding 
was that evolvability was maximized over intermediate values of 
q, with the exact maximum dependent on neutral network param-
eters. In all cases, the authors found a broad area of evolvability 
with sharp decreases at the limits of extremely high and extremely 
low values of q. At q = 1, complete robustness, evolvability is zero 
because no new phenotypes are accessible. As q decreases from 
unity, new phenotypes begin to be accessible from the neutral net-
work and evolvability increases. As q → 0, all mutations express an 
alternative phenotype and the neutral network disappears. These 
analytic results were well supported by numerical simulations of 
both the underlying master equation model and on simulated RNA 
structures.

These results do not address the effects of multicellularity and 
the hierarchical organization of eukaryotic cells on robustness and 
adaptation. Most of the early experimental work on robustness 
and canalization cited above was carried out in multicellular an-
imals. Metazoan organisms undergo development, a process that 
unfolds in time during which cells come to express different sets 
of genes in a precise spatial pattern. Although the relationship 
between development and evolution is now a subject of active 
comparative studies among molecular geneticists, evo-devo has 
never been theoretically unified with population genetics. The 
same theoretical issues extend to the evolutionary effects of the 
hierarchical structure of eukaryotic cells. This theoretical prob-
lem arises from the fact that population genetics classically treats 
fitness as a direct function of genotype, with epistasis occurring 
as a correction factor to additive contributions from different ge-
netic loci. Studies of canalization and evolvability based on pop-
ulation genetics (Carter et al., 2005; Draghi et al., 2010; Eshel & 
Matessi, 1998; Hermisson & Wagner, 2004; Wagner et al., 1997) 
do not explicitly consider development, which is fundamen-
tally epistatic in nature. Epistatic models used for developmen-
tal problems (Mjolsness et al.,  1991; Reinitz et al.,  1995; Reinitz 
& Sharp,  1995) have been applied to evolutionary problems for 
some time (Draghi & Whitlock,  2012; Siegal & Bergman,  2002; 
Wagner, 1994, 1996), but only in the context of considering the 
state of a single cell. An advantage of such approaches is that they 
permit analyses that can address a structurally realistic picture 
that represents metabolic and/or genetic networks under the con-
trol of an explicitly represented genome that can respond to the 
environment (Crombach & Hogeweg, 2008; Cuypers et al., 2017), 
or molecularly realistic models of a single locus whose evolvabil-
ity is controlled by a second locus with anti-terminator activity 
(Griswold & Masel, 2009). None of these studies address the ef-
fects of the temporal nature of development or the requirement 
for multiple cellular states in a metazoan organism, although it has 
been suggested that these effects are pervasive on the entire his-
tory of metazoan evolution (Buss, 1987).

In this work, we address this problem by analysing the relation-
ship between robustness and evolvability with a theoretical model 
that contains an explicit representation of differing cell types aris-
ing from differential gene expression in different cells of a meta-
zoan organism. The model's representation of cell types can also 
be thought of as applying to the organelles of eukaryotic cells and 
other hierarchical phenotypes, although our primary motivation 
was to address the better characterized issue of multicellularity. 
The model employs an explicit genotype to phenotype map, treats 
fitness as arising from interactions between the phenotype and 
environment and has tunable control of robustness. For simplicity, 
genotypes and phenotypes are encoded using Boolean vectors. 
The widely different timescales of ontogeny and evolution raise 
serious computational problems; for that reason, we do not con-
sider the temporal aspects of development. Our model (1) draws 
on established principles of gene regulatory control of cell types, 
each of which constitutes a trait (we hypothesize gene regulatory 
networks that determine trait values); (2) specifies a genotype to 
phenotype map that represents pleiotropy (multiple genotypes 
map to multiple cell types) that is (3) calculated from alleles (ON/
OFF) and the regulatory activities of the proteins they produce 
(activating/repressing); (4) has robustness parameters that con-
trol the sensitivity of each mutation; (5) allows mutational inputs 
to the robustness parameter, enabling (6) dynamical analysis of 
the evolution of both traits and robustness simultaneously via a 
standard Wright–Fisher population genetic model with selection. 
This dynamical formulation permits us to evaluate evolvability by 
comparing the mean fitness of populations under different evo-
lutionary conditions. Our specific mathematical choices, to be 
described below, are intended to produce the simplest possible 
model that incorporates features 1 to 6 above. We employ the 
model to explore the relationship between mutational robustness 
and evolvability for populations at the phenotypic optimum and 
for populations that are challenged to evolve towards a novel phe-
notypic optimum. A general theme of the results presented below 
is that when genes control a complex hierarchical phenotype, 
adaptive changes in some selectable traits tend to be accompa-
nied by fitness changes in other traits controlled by the same gene, 
forcing adaptation to occur at a much higher level of robustness 
than would be true otherwise.

2  |  THE MODEL

The model equations presented below are motivated by some basic 
concepts of developmental and evolutionary genetics. Metazoan 
organisms are composed of cells, each with the same genotype 
but with each cell type expressing a different set of genes. The cell 
type of each differentiated cell can be considered as phenotype 
at a cellular level. Phenotype at the organismal level depends on 
the entire collection of differentiated cell types. Selection occurs 
at the organismal level, and depends on both organismal pheno-
type and environment. The model equations below are a minimal 
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representation of this two-level hierarchical phenotype, with the 
organismal fitness dependent on the presence of a necessary set 
of cell types.

Both cellular and organismal phenotype are under genetic con-
trol, each by a different set of genes. In developmental genetics, 
genes can be roughly classified as ‘selectors’ or ‘effectors’. Selector 
genes (also called ‘master regulator genes’) control organismal phe-
notype by altering the number and spatial pattern of cell types. 
Such genes are often involved in signalling or transcriptional reg-
ulation, with the BMP (Montanari et al.,  2022) and HOX-complex 
(Pick & Heffer,  2012) genes, respectively, representing examples 
of each class. Selector genes tend to have homologues throughout 
metazoa, but are not found in single celled organisms. By contrast, 
effector genes (also called ‘terminal differentiation genes’) produce 
products—actins, pigments, metabolic enzymes, ion channels and 
so on—that implement a particular cell type. Effector genes tend to 
have homologues in both metazoan and single-celled organisms. The 
model equations below represent control of effector genes by selec-
tor genes with a minimal regulatory network.

The necessity for multiple cell types and the distinction between 
selector and effector genes are the central motivations for our 
model equations. We imagine effector genes to evolve sufficiently 
slowly compared to selector genes that our model's genotype–
phenotype map will describe selector genes evolving and produc-
ing changing phenotypes by acting on a relatively fixed network of 
effector genes. Phenotype is specified by a collection of cell types, 
with the fitness of a given phenotype defined by its interaction with 
the surrounding environment.

Our model represents a population of hypothetical multicellular 
organisms evolving under Wright–Fisher dynamics. Each organism 
is represented with a genotype containing selector genes v acting 
on an effector gene regulatory network T to produce a collection 
of terminally differentiated cell types z. This representation consti-
tutes an explicit genotype to phenotype map (Figure  1a). At each 
generation, the selector genotype mutates and mutations are eval-
uated by the genotype to phenotype map, resulting in a possible 
change in the phenotype. The phenotype and environment then 
determine the fitness of each individual, which the sampling of the 
genotype in the next generation is based on. Although the struc-
ture of the genotype–phenotype map is kept constant during simu-
lations, the sensitivity of phenotype to genotype—robustness—can 
be controlled by specific parameters, either directly or by adding a 
robustness control locus to the genotype. Below we describe each 
component of the model in detail.

2.1  |  Genotype to phenotype map

We consider a haploid organism with complete linkage of selector 
genes. These are the total set of selector genes in the genome which 
control effector genes and through them the organismal phenotype. 
The collection of all these selector genes is the genotype, represented 
by a Boolean vector v, with length L. We envision each selector gene 

as having two alleles, which we represent as ON (vi = 1) or OFF (vi = 0

). Because we are interested in the pleiotropic effects of genotype 
on selectable traits, we model this process explicitly. We represent 
an individual's multidimensional phenotype z by a Boolean vector 
with a collection of K traits, each of which can be identified with a 
cell type. Each trait considered in the model is discrete and has only 
two states, ON (zi = 1) and OFF (zi = 0), representing the presence 
or absence of a particular cell type that generates a selectable trait. 
The cell type in question might correspond to a morphological 
feature such as a bristle, or it might be related to the expression 
of an enzyme required to make pigment, giving rise to a yellow or 
blue body colour (Figure 1b). An effector gene which implements 
the effects of selector gene vj on cell type (trait) zi is denoted tij. 
We picture each effector gene as having three allelic states which 
promote, inhibit or have no effect on cell type zi.

The genotype to phenotype map is represented by a one-layer 
neural net. Equations of this type were introduced by McCulloch 
and Pitts  (1943), who called them ‘perceptrons’, and later applied 
to genetic networks by Leon Glass and collaborators (Glass & 
Kauffman, 1972, 1973). This perceptron maps genotype v to pheno-
type z using the equation

where zi , vj ∈ {0, 1}. Each component tij ∈ { − 1,0,1} of T represents a 
particular allele of an effector gene which mediates the impact of se-
lector gene vj on cell type zi. tij = 0 means that gene vj is not involved 
in regulating cell type zi. tij = 1 represents activation and tij = − 1 rep-
resents repression. � determines the strength of each activation or re-
pression. Note that this contribution only occurs when the gene vj is 
ON. hi, a real number, is the threshold for cell type zi to determine its 
phenotypic state. �(y) is a step function such that �(y) = 0 iffy ≤ 0, and 
1 otherwise. It is evident that in order for cell type zi to be ON, the sum 
of the activation and repression strengths of all the genes 

∑

jtijvj on cell 
type zi must be greater than the threshold value hi.

We chose this mathematical picture in order to give the simplest 
possible representation of pleiotropic control of phenotype by gen-
otype in the presence of thresholds. In order to represent the evo-
lutionary dynamics of multicellular organisms in a tractable manner, 
we allow the genes in v to evolve, but not the genes that determine T. 
Allowing v but not T to evolve allows us to focus on the fundamental 
evolutionary constraints inherent to multicellularity.

Key conceptual points about our model are illustrated in 
Figure 1. Figure 1b shows an example of a hypothetical organism in 
which six genes (L = 6) regulate two cell types and hence two traits 
(K = 2). v1, v4, v5, v6 are ON and v2, v3 are OFF, � is set to 1 and the 
actions of the genes on cell types are shown. The interactions and 
thresholds that determine different cell types are independently 
initialized. Once initialized, the genotype to phenotype map is kept 
constant unless the robustness parameter changes during evolu-
tion (Section III). Given the current regulation, the total activation 
for z1 is below the threshold h1, rendering z1 OFF. The activation for 

(1)zi = �

(

�

L
∑

j=1

tijvj − hi

)

,
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z2 exceeds the threshold h2, and therefore z2 is ON. z1 determines 
the colour of the organism, perhaps encoding an enzyme, in which 
the OFF state leads to the yellow colour. z2 determines the pres-
ence or absence of a cell type containing a bristle, and as a result, 
its ON state gives rise to a bristle. In evolutionary simulations, only 
mutations in the genotype v are allowed. However, given the current 
genotype to phenotype map, no matter how genotype changes, only 
three out of four possible phenotypes can be achieved (Figure 1c). In 
this example, in order for z1 to be ON, at least two genes out of v1, 
v3 and v4 have to be ON. The genotype–phenotype map thus con-
strains z2 to be ON if z1 is ON. Hence, there is no case in which z1 is 

ON but z2 is OFF. This illustrates the fact that accessible phenotypic 
space can be smaller than the whole phenotypic space because of 
developmental constraints.

2.2  |  Phenotype to fitness map

The absolute fitness of an individual depends on both the pheno-
type z and the environment b, with the K components bi ∈ {0, 1}. 
The dependence of fitness on z and b could be quite complex, but 
in the present application, we consider the environment to specify 

F I G U R E  1  Overview of the model. (a) The genotype–phenotype map. Selector genes vj act on an effector gene regulatory network 
tij to produce a traits in the form of cell types zi. (b) Schematic example of two cell types and hence traits determined by the genotype to 
phenotype map within one individual, from Equation (1). z1 determines colour, and z2 determines the presence or absence of a bristle. In 
this example, the number of genes regulating the phenotype is 6, and � is set to 1. Actions of each gene on each phenotype are marked by 
arrows. Activation is represented by arrows with a triangle end, while repression is represented by a bar end. A grey dashed line means no 
effect. Under the state of v shown, z1 = 0 and z2 = 1. (c) Examples of different genotype configurations that give rise to different phenotype, 
given the genotype to phenotype map in b. The orange colour indicates ‘1’, and grey indicates ‘0’ for each genotype or phenotype 
element. Note that under this particular genotype to phenotype map, the phenotype vector z cannot take on the value of (1, 0) under any 
configuration of genotype, showing the constraint from the genotype to phenotype map in our model. (d) Overview of the full model. 
Genotype is v, phenotype is z. The first part is a genotype to phenotype map, and the second part is a phenotype to fitness map. Selection is 
on phenotype, evaluated by the environment b.

(d)
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0 1
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a trivially explicit optimum phenotype, which denotes the most fit 
state for each cell type trait in such an environment (Figure 1d). The 
absolute fitness W of an individual is defined as the proportion of the 
K traits in a phenotype z that match those of an optimal phenotype 
b, so that

where D(b, z) is the Hamming distance between b and z. At the end 
of each generation, each individual's relative fitness is calculated by 
normalizing its absolute fitness to the sum of the absolute fitnesses 
of all individuals in the population. The summed relative fitness of all 
individuals with a given genotype is the probability with which mem-
bers of the next generation with that genotype are created. The list of 
variables is shown in Table 1.

2.3  |  Initial conditions

In evolution simulations, described below, the initial population is 
uniform with a random genotype generated as follows. We ran-
domly assign a proportion a of genes in v to be 1. The probability that 
each tij has a non-zero value is given by the parameter c, such that 
P
(

tij = 1
)

= P
(

tij = − 1
)

= c∕2, and P
(

tij = 0
)

= 1 − c. These choices 
mean that the random variable tijvj is i.i.d. with a mean of zero and 
variance ac, and hence, the Central Limit Theorem indicates that for 
the large values of L, we consider (Table 2), 

∑

jtijvj ∼  (0, acL). We 
randomly draw hi from the same normal distribution, so that the ar-
gument of � in Equation (1), given by

is distributed ∼ 
(

0,
(

1 + �2
)

acL
)

. These values determine the initial 
values of z. b is set in one of three ways. For Eopt, the ‘optimal environ-
ment’, the environment b is set to be the initial phenotype z in the pop-
ulation. A “new environment” Enew may be represented in two possible 
ways. In the first, the new environment b∗ is set to a random Boolean 
vector with each component having a 0.5 probability of being one. We 
define a second type of new environment, b∗∗, in which optimal fitness 

is guaranteed to be reachable within the genotypic space. b∗∗ is ini-
tialized by drawing a random genotype vector and selecting a random 
genotype–phenotype map, setting b∗∗ to be optimal for this map as 
was done with Eopt, but using a re-randomized genotype vector to start 
the simulation environment.

2.4  |  Calculation of robustness

R, the robustness, denotes the probability that a cell type will not 
change as the result of a single mutation, specifically the prob-
ability that a cell type zi is not changed as a consequence of this 
mutation in vj. R has the same meaning as the parameter q used by 
Draghi et al.  (2010), where q is an explicit adjustable parameter of 
the model used by these authors. In our model, by contrast, R is an 
emergent property of the underlying structure of the genotype to 
phenotype map, a model component which is absent in the cited 
work. Here, we instead control R indirectly by altering the argument 
of � in Equation (1) by rescaling the sum 

∑L

j=1
tijvj with or without a 

compensatory rescaling of the threshold hi. These methods have dif-
ferent side effects and access different regions of the possible range 
of values of R, as we describe below.

The first method of controlling R makes use of the parameter � 
which occurs in the argument of �(y) in Equation (1). It is evident that 
the probability of altering a component of z when a component of v 
mutates is a monotonically increasing function of �. In Equation (3), 
yi ∼ 

(

0,
(

1 + �2
)

acL
)

, and the probability that tij = + 1 is c∕2. 
Hence, when vk mutates the probability of changing a cell type zi is 
given by

where Φ(x) represents the CDF of the standard normal distribution. 
Then, the robustness is given by

Because � ∕
√

(

1 + �2
)

acL ranges from 0 to (acL)−1∕2 as � in-
creases from 0 to ∞, it is evident that increasing � from 0 to ∞ will 
cause R to decrease from 1 to values just below 1. Given the param-
eters in Table 2, the lowest robustness level reachable by � is 0.996, 
meaning that for 1000 cell types, one mutation at most changes four 
cell types on average. We consider three values of �—0.1, 1 and 10—
for subsequent use in simulations (Figure 2a). Note that changing � 
during a simulation will change not only robustness, but also pos-
sibly the current phenotype as well, a point evident by inspection 
of Equation (3). In order to investigate the evolution of robustness 
itself, we would like a parameter that only changes the probability of 

(2)W = 1 −
D(b, z)

K
,

(3)yi = �

L
∑

j=1

tijvj − hi ,

(4)

p=2 ⋅P
(

yi in(−� , 0)beforemutation
)

⋅P
(

whenvkmutates, yi increasesby�
)

=2 ⋅

[

0.5−Φ

(

−�∕

√

(

1+�2
)

acL

)]

⋅c∕2

= c

[

0.5−Φ

(

−�∕

√

(

1+�2
)

acL

)]

,

(5)R = 1 − p = 1 − c

[

0.5 − Φ

(

− � ∕

√

(

1 + �2
)

acL

)]

.

TA B L E  1  List of variables.

Vector Element Element definition

v vj jth genotype

z zi i th phenotype

T tij Functional contribution of genotype j 
on trait i

h hi Threshold for trait i

b bi i th element in the environment, 
representing desired phenotype for 
zi under current environment
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mutations on future phenotypes without changing the current phe-
notype. In addition, this parameter allows the exploration of a wider 
range of values of R.

To address this problem, we set � = 1 and introduce a new pa-
rameter � in Equation (3), so that

where h�
i
= (� − 1)

∑

jtijvj + hi, thus keeping yi and the current pheno-
type z the same, but altering the probability that z will change because 
of a mutation in v. Then, in the initial population we have, using the 
same reasoning used in Equation (4),

Figure 2b shows how robustness changes by varying �. It is ev-
ident by inspection of Equation  (7) and Figure  2b that as � → ∞ , 
R → 0.75. As will become apparent in the Results, this range of R en-
compasses the biologically relevant range.

2.5  |  Evolution simulations

The evolutionary simulation was implemented under the C++ tem-
plate framework of the fwdpp model (Thornton, 2014) with modifica-
tions described below. The Eigen package (Guennebaud et al., 2010) 
was used to calculate genotype to phenotype map. Code is available 
on github (https://github.com/pyjia​ng/ct_fwdpp).

We evaluated evolution at different robustness levels by carry-
ing out haploid Wright–Fisher forward simulations using the param-
eter values given in Table 2. In each generation, �LN mutations are 

(6)yi = �

L
∑

j=1

tijvj − h�
i
,

(7)R = 1 − p = 1 − c
�

0.5 − Φ
�

− � ∕
√

2acL
��

.

Parameters Definition Value(s)

c Probability of tij not 0 0.5

a Proportion of 1s in v 0.5

K Length of phenotype vector z 1000

L Length of genotype vector v 10 000

� Activation/repression coefficient of 
each gene on its target trait

0.1, 1, 10

� A second parameter to scale robustness 0.5, 1, 2, 2.5, 3, 3.5, 
4, 8, 16, 64, 128, 256

� Mutation rate per gene 10
−6

N Population size 10 000

�r Mutation rate on robust genotype 10
−5

TA B L E  2  List of parameters.

F I G U R E  2  Control of robustness by � and �. (a) Relationship of the parameter � to robustness. Boxplots are calculations from simulations 
and the solid line shows the analytic result from Equation (5) with parameters c = 0.5, a = 0.5, L = 10 000,K = 1000 . For the simulations, 
we first simulate traits based on parameters. Then for each simulated trait, every bit in the genotype v is flipped and the new phenotype 
is calculated, the number of bits in the new phenotype compared to the initial one that are the same were recorded. A total of 1000 
simulations are done for each parameter set. Red triangles mark three � values, 0.1, 1 and 10, which are used for evolutionary simulations. 
(b) Relationship of the parameter � with robustness. Boxplots are calculations from simulations. The solid line shows the analytic result from 
Equation (7) with parameters c = 0.5, a = 0.5, L = 10 000,K = 1000. Simulations are done as in a. The inset shows the relationship of � to 
robustness for � ≤ 7.

(a) (b)
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introduced into the population. Each mutation corresponds to flipping 
a randomly selected bit in v. The phenotype is calculated for each new 
genotype, the fitness is calculated from Equation (2), and individuals 
are generated for the succeeding generation with probability propor-
tional to relative fitness. We monitor population mean fitness as the 
population adapts from its initial phenotypic state under one of the 
three environments described above under ‘Initial Conditions’. For 
fixed robustness levels, 8 × 106 generations were simulated under a 
given environment. When robustness was allowed to evolve, 1.6 × 107 
generations were simulated under a given environment.

We set the total number of genes L to be 10 000, the same order 
of magnitude as the number of genes in a typical eukaryote. For sim-
ulations with a fixed level of robustness, genes in genotype v are 
fully linked, with mutation rate � per gene per generation. � is set 
to be 10−6. The individual probability of acquiring a new mutation 
each generation is 0.01; with the population size (N = 10 000), 100 
new mutations are introduced on average each generation into the 
population. Unless stated otherwise, the parameter values in Table 2 
were used for all simulations.

For simulations with evolving levels of robustness, we add a ro-
bustness locus r which mutates at rate �r. Eight levels of robustness are 
possible, represented by three bits (Table S2). Following mutation, the 
robustness locus is evaluated first to determine the appropriate � value 
for that individual, which is then applied to the genotype v to calculate 
the phenotype. The genes in v remain completely linked, but recombina-
tion is possible between the genotype v and the robustness locus r. The 
recombination rate r can range from 0 to 0.5. Recombination was im-
plemented by exchanging robustness loci in Poisson (2rN) haploid pairs.

3  |  RESULTS

As shown in the description of the model, the value of robustness 
R under the genotype to phenotype map can be controlled in three 
ways, which we consider in the three sections below. In Section I, 
we first explore evolution dynamics with three levels of robustness 
within a highly restricted robustness space regulated by �. In Section 
II, we explore the relationship of evolution with different levels of 
robustness under a larger robustness space regulated by �. Lastly, 
in Section III, we encode robustness with a genetic locus and let it 
co-evolve with the phenotype under selection.

3.1  |  Section I: Evolution near maximal robustness

In this section, we begin our analysis by considering very small 
departures from the limiting case of maximum robustness R = 1. 
Although all levels of robustness considered in this section are high 
in absolute value, they have significantly different effects on evolu-
tion. In the presentation below, we denote these regimes relative 
to one another as high, medium and low robustness. These terms 
describe values of R =0.9996, 0.9972 and 0.9960, respectively, ob-
tained by setting � to 0.1, 1 and 10.

3.1.1  |  Evolution in a constant, optimal environment 
(Eopt)

We first explore which level of robustness would be evolutionarily 
preferable when its current phenotype has already adapted to such 
an environment, denoted by Eopt.

Figure  3a shows mean population fitness changes across 
with high, medium and low robustness (in blue, green and yel-
low). Populations are initially fixed for the optimal genotype and 
are allowed to evolve with a fixed level of robustness until a pla-
teau in population mean fitness is observed. With high robust-
ness (R = 0.9996), the population mean fitness remains close to 
the optimal value (w = 0.99929, � = 0.00025), while when robust-
ness is low R = 0.9960, the population mean fitness equilibrates 
at a lower value (w = 0.95869, � = 0.00478). Under Eopt, high ro-
bustness is selectively favoured over low robustness. Since the 
optimal phenotype is fixed in the initial population, mutations 
are deleterious initially (Figure  S1C), and even at equilibrium, the 
distribution of selective effects remains negatively skewed with 
a negative mean (Figure  S1D). The reduction in population mean 
fitness is driven mostly by fixed mutations rather than segregat-
ing mutations (Figure S2). In fact, a greater proportion of mutations 
are purged from the population when robustness is low, resulting 
in lower mean population heterozygosity (Figure S1A). The loss of 
fitness when robustness is lower, we hypothesize, may be a con-
sequence of genome-wide hitchhiking effects of selection against 
deleterious mutation under our model of complete linkage of loci 
(Charlesworth, 2013; Charlesworth et al., 1993; Haigh, 1978).

We also investigated evolution under Eopt for all combinations 
of values of K and L ∈ {100,1000,10 000}, with all other parameters 
being the same (Figure S3. The corresponding robustness levels R 
can be found in Table S1.) Within the robustness range determined 
by �, there is an overall decline in population fitness with decreasing 
robustness, and the sensitivity of population fitness to robustness is 
greater with larger number of genes. One combination of parameter 
values (K = 10 000, L = 1000), however, produces an anomalous re-
sult in that this pattern reverses, with only high robustness having 
reduced fitness (� = 0.1; Figure S3F). This behaviour may be a mani-
festation of Muller's Ratchet wherein, after the population exceeds 
a threshold number of deleterious mutations, initially hidden by ro-
bustness, mean fitness declines precipitously.

3.1.2  |  Evolution following a sudden environmental 
shift (Enew)

What will the relationship between robustness and evolution be 
when there is a sudden environmental shift? We first explore 
this question by randomly creating a new environment b∗, and 
challenge the homogeneously initialized population to evolve 
towards this optimum regardless of its current phenotype. The 
expected initial mean fitness of population is 0.5 according to our 
fitness definition. We find that populations with low robustness 
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adapt more quickly than those with high robustness (Figure 3b). 
Low robustness populations also reach substantially higher 
equilibrium mean fitness than high robustness populations. Both 
of these observations—the initial rate and the final mean fitness 
of population—have monotonic relationships with robustness 

(Figure  S4). The increase of population mean fitness is driven 
mostly by fixed mutations (Figure S2).

The aforementioned simulations were initialized with a genet-
ically homogeneous population, whereas most populations will be 
genetically variable prior to an environmental shift. We therefore 

F I G U R E  3  Different evolutionary trajectories with a fixed level of robustness by �. Schematic plots (oval-shaped graphs) in a–d indicate 
what kind of evolutionary regimes in the phenotypic space the simulations are in. Black dashed oval indicates the whole phenotypic space. 
Black triangle represents the initial phenotype of the starting population. Red solid circle indicates the optimal phenotype specified for 
each environment. Circle with either blue or yellow colour represents the total phenotypic space for R = 0.9996 (� = 0.1) and R = 0.9960 
(� = 10) respectively. (a) Mean fitness changes over time for populations with different robustness levels under Eopt. A total of 20 simulations 
were done for each level of robustness. The thick solid lines show the mean of the simulations at each generation. The upper and lower 
boundaries are 1.5 standard deviation on each side of the mean (same in b, d). Results from every 5000th generation are plotted due to 
the large number of generation simulated (same in b, d). (b) The change in mean fitness over time for initially homogeneous populations 
with differing robustness under a random new environment Enew. (c) Schematic plot illustrates high robustness population have a smaller 
phenotypic space compared to low robustness ones. (d) Mean fitness changes over time for populations initialized with a ‘attainable’ random 
environment, where this new environment b∗∗ is initialized using a random genotype, with the same genotype to phenotype map as the 
initialized population. To the left of the vertical dashed line shows the initial mean fitness of each population in the new attainable random 
environment. Each dot represents one simulation, with jittering. (e) One simulation showing phenotypic space for all genotype combinations 
for the three robustness levels for K = 6, L = 6. Each circle represents a unique genotype, and each column indicates different total number 
of ‘1's in the genotype vector (from left to right, zero ‘1's to six ‘1's). Each genotype is connected to its neighbouring genotype that has one 
bit of difference in dashed lines. One set of randomly generated T and h was used for all � values and for all combinations of genotype. For 
different � values, the T was scaled to �T, according to the Equation (1). The corresponding phenotype for each genotype was calculated. 
Each Boolean phenotype vector was then converted to an integer value, from which each unique value is assigned to a colour. The numbers 
at the bottom indicates the unique number of different phenotypes in this simulation, that is, size of the phenotypic space under a particular 
robustness level.

Generations (millions) Generations (millions)

Constant optimal environment (Eopt) Random initial environment (Enew)

Random initial genotype, with attainable target

M
ea

n 
fit

ne
ss

of
 p

op
ul

at
io

n

M
ea

n 
fit

ne
ss

of
 p

op
ul

at
io

n

R = 0.9960(          )

R = 0.9996(          )
R = 0.9972(        )

M
ea

n 
fit

ne
ss

 o
f p

op
ul

at
io

n

Generations (millions)

(c)

(a) (b)

(d)

(e)

D
ow

nloaded from
 https://academ

ic.oup.com
/jeb/article/36/6/906/7576952 by guest on 09 June 2024



    |  915JIANG et al.

investigated whether initial genetic variability affects the ability of 
a population to evolve to a new optimum phenotype, noting that ro-
bust populations are more genetically variable than less robust pop-
ulations (Figure S1A). We subject populations to evolution under Eopt 
for 8 × 106 generations (Figure 3a) before applying a change in envi-
ronment (a randomly chosen b∗, Enew) at the very next generation. We 
then allowed the populations to adapt to this new environment for 
another 8 × 106 generations. The population evolutionary dynamics 
after the shift (Figure S1B) show little difference compared to pop-
ulations starting with a single genotype (Figure 3b vs. Figure S1B). 
Thus, there is no initial advantage under this framework in highly 
robust populations to have higher genetic diversity in terms of their 
ability to adapt to a novel environment. This is because the genotype 
to phenotype map is kept constant while changing the environment. 
Although high robustness populations possess greater initial genetic 
diversity at the onset of environmental change, high robustness is 
restricting their phenotypic variation and therefore hinder selection 
that can act when adapting to a new environment.

The distribution of selection coefficients, s, when adapting to-
wards a new optimum, is initially close to symmetric under our model 
for high and medium robustness, with a positive mean for low ro-
bustness (Figure S1E). Moreover, low robustness populations have a 
larger variance in fitness, which accounts for their more rapid initial 
increase in fitness as predicted by Fisher's fundamental theorem of 
natural selection.

High robustness populations also reach a lower fitness plateau 
than low robustness populations. This is surprising because classic 
population genetic models predict a mutation-selection balance 
such that no matter whether populations start high or low in their 
initial fitness, at equilibrium, they would reach the same level of 
population mean fitness (Goyal et al., 2012). However, this does not 
hold in our model. We hypothesized that high robustness results in a 
smaller phenotypic space than low robustness, and that when a ran-
dom phenotype target is drawn from the universe of possible pheno-
types, it will typically be outside of the realizable phenotypic range 
of the population. Since low robustness explores a larger phenotypic 
space, it can evolve to a phenotype closer to the random phenotypic 
target (Figure 3c). We create a schematic notation to illustrate this 
idea, and add it to each of the simulation plots. The oval with black 
dashed lines represents the whole phenotypic space. The circle with 
a solid line indicates the phenotypic space with a certain level of 
robustness. The black triangle represents the phenotypic state of 
the current population. The red solid circle represents the environ-
ment's most preferred phenotypic state.

To test this hypothesis, we set up a different initial ‘random’ op-
timal environment b∗∗ such that its corresponding optimal pheno-
type is reachable within each population's genotypic search space 
(Figure 3d). The schematic in the inset of Figure 3d shows that the 
b
∗∗ is within the phenotypic space of high robustness as an example. 

Under this scheme, populations achieved similar equilibrium mean 
fitness for each robustness level as when they started with the op-
timal phenotype (Figure 3a,d). This indicates that when the pheno-
typic target is achievable within the starting population's phenotypic 

space, the population is able to evolve to the new optimum and 
reach a mutation-selection balance. Notably, when examining the 
initial fitness of populations under b∗∗, high robustness populations 
have a phenotype more similar to their parental genotypes, resulting 
a higher initial fitness values (Figure 3d, initial fitness). All these re-
sults support our hypothesis.

Since it is not practical to enumerate the complete phenotypic 
space for L = 10 000 genotypes, we enumerate all combinations of 
genotype and phenotype under the three robustness levels with 
lower dimensions at L = 6,K = 6. Phenotypes are generated from 
all possible genotypes with the same genotype to phenotype map, 
except the robustness parameter. Figure  3e shows one example 
simulation. It is clear that high robustness produces a much smaller 
phenotypic space than low robustness, supporting our hypothesis.

3.2  |  Section II: Evolution under a wider 
range of robustness

3.2.1  |  Evolution under Eopt and Enew

� allows us to explore a wider range of robustness R, from just below 
1 to 0.75 (Figure 2b). In this section, we investigate robustness regu-
lated by � for populations under Eopt and Enew.

Rather than the monotonic relationship of robustness to fit-
ness found when varying � from Section I (Figure  3a,b), we ob-
serve more complicated dynamics with a bifurcation in final mean 
fitness at intermediate �, and an inversion in the relationship be-
tween robustness and evolution when robustness decreases fur-
ther. Typical trajectories are summarized in Figure  4a,b, with two 
representative simulation trajectories for four robustness values 
R = 0.9972, 0.9944, 0.9915, 0.9775 specified by � = 1, 2, 3 and 8, re-
spectively, under Eopt or Enew (Figures S5 and S6 show trajectories for 
all � values). For simplicity, we will describe results by � values. When 
� varies between 1 and 2, the evolution dynamics is similar to that in 
Section I. This happens because the parameter space of robustness R 
explored by � within this range is similar to that of �. However, when 
� = 3, we saw a novel bifurcating behaviour of evolution trajectories. 
Under Eopt, populations either remain close to the optimal fitness 
value (Figure 4a, dotted line), or drop to a lower fitness value (solid 
line). When challenged to adapt to Enew, populations either reach a 
higher fitness value (Figure 4b, solid line) or are trapped with sub-
optimal phenotypes (dotted line). When robustness decreases even 
further, interestingly, populations remain close to the optimal fitness 
in Eopt when � = 8. This reverses the relationship of evolution with 
robustness. Similarly, such a reverse in the relationship is reflected 
in Enew, populations with lower robustness are unable to reach high 
fitness when challenged with Enew.

Mean fitness at the end of each simulation is shown in Figure 4c,d 
for all � value tested. The grey shaded area shows the correspond-
ing robustness in Section I. For Eopt, further decreasing robustness 
R by increasing � beyond 8 does not change its behaviour. For Enew, 
increasing � beyond 8 only slightly increases the final mean fitness, 
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but mean fitness stabilizes for � ≥ 128. Specifically, we find that low 
robustness (� ≥ 8) populations, though they eventually adapt poorly 
to a novel environment, initially adapt more quickly than high ro-
bustness populations (Figure 4d and Figure S8).

We sought to find the cause of the bifurcation at intermediate 
� and the inverted behaviour when robustness decreases further. 
We suspect it could be attributable to a different number of fixa-
tions under different robustness levels, so we examined the total 
number of fixations for each � value at the end of the simulations 
(Figure 4c,d, grey lines). We find a similar pattern for the cumulative 
number of fixations for Eopt and Enew simulations—the total number 
of fixations decreases with decreasing robustness, and becomes al-
most zero when � ≥ 8. We also observed an increased variance in 
the number of fixations for � values between 3 and 4, which cor-
relates with the bifurcation behaviour in the final mean fitness of 
each population. We also compared the cumulative number of fixa-
tions against final population mean fitness under both Eopt and Enew 

for � ≥ 2.5 (Figure  S9). We observe two non-overlapping clusters 
of population final mean fitness, one high and one low, separated 
by the number of fixations. For Eopt, populations that achieve high 
fitness fix no mutations (Figure S10), while the ones that fix many 
mutations have a lower fitness. For Enew, populations that fix few 
mutations remain at a low fitness while ones with many fixations 
achieve a higher fitness.

Note for Enew at � = 8, there are some fixations in the first 2 × 106 
generations but populations nevertheless remain trapped at low fit-
ness (Figure  S11). We therefore suspect fixation rate at early and 
late stages can affect population dynamics differently. We quantify 
fixation rate as the average number of fixations per 1000 genera-
tions, and calculate early and late fixation rate in the first 106 gener-
ations or the next 15 × 106 generations (Figure 4e). When � ≤ 2, the 
fixation rate is high and differs little between early and late. When 
� ≥ 8, both early and late fixation rates are close to 0, with some 
having low early fixation rates. In contrast, for intermediate � values 

F I G U R E  4  Populations showing non-linear relationship with larger range of robustness regulated by � under constant optimal or random 
initial environment. (a) Two representative simulations showing mean fitness of population changes over time for � values 1,2,3 and 8 under 
Eopt. One simulation is shown by a solid line and the other is by a dashed line, over 1.6 × 107 generations. (Results from every 400 000th 
generation are plotted due to large number of generation simulated. Same in b.) (b) Two representative simulations showing mean fitness of 
population changes over time for � values of 1,2,3 and 8 under Enew. The x axis of c and d are the same, with c denoting the � values, and d 
denoting the corresponding the robustness levels R. (c) Behaviours of final population mean fitness at 1.6 × 107 generations with different � 
under Eopt for 20 simulations at each � value. Different colours represent different � values. Note this colour scheme for different � values 
are used consistently in Figures 5 and 6. Jittering is used to display points with the same � values. The line shows the mean number of 
fixations at the end of the simulations with each � value. The error bars show 15% and 85% of the final fixation numbers. The light grey 
rectangle-shaded area shows the range of robustness considered in Section I. (d) Same as c under Enew. (e) Short-term fixation rate versus 
long-term fixation rate for populations with different �. Fixation rate is calculated as the average number of fixations per 1000 generations 
given a period of time. Short-term fixation rate is the average fixation rate for the initial 106 generations, and the long-term fixation rate is 
the average fixation rate from generation 1 000 001 to generation 16 000 000.
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(2.5 ≤ � ≤ 4 ), the fixation rate is low early and late, or it can be low 
early but jump to a higher value in the late period. This latter sit-
uation represents evolutionary trajectories leading to high fitness. 
Whether or not populations can gain a positive long-term fixation 
rate determines the bifurcation behaviour.

3.3  |  Section III: A co-evolved locus that 
controls robustness

To gain a better insight of how robustness could evolve indirectly 
when only the phenotype is under selection, we introduce a 
mutable locus, r , controlling robustness levels by mapping its 
genotype to parameter �. The reason we chose to change � is 
because it has the desirable property of only affecting sensitivity 
of mutations on phenotypes while keeping the current phenotype 
the same. We encode r  with eight levels of robustness, ranging 
from 0.5 to 8 (the first eight � values in Figure  4c) since the 
evolutionary dynamic behaviour for � larger than 8 is qualitatively 
similar to � = 8 from Section II. Three bits are used to encode the 
eight states (Table S2). A mutation in the robustness locus alters a 
single bit, as is the case for the rest of the genotype. The mutation 
rate of the robustness locus is set to �r = 10−5. The population is 
initialized with equal frequencies of the eight robustness alleles. 

The population then evolves under the same two environmental 
scenarios Eopt and Enew.

Our initial simulations were carried out with the robustness 
locus completely linked to genotype v. Under Eopt, the most robust 
genotype (� = 0.5) goes to fixation in every simulation we examined 
(n = 20, Figure 5a,b show five instances). We note, however, this be-
haviour is not consistent with the long-term population mean fitness 
changes with a fixed level of robustness (Figure 4a,c), that high mean 
population fitness is achieved on either side of the � bifurcation, 
with the least robust population (� = 8) actually having the highest 
fitness. Since the high robustness allele (� = 0.5) fixes rather quickly, 
we suspect it could be due to short-term fitness advantages at early 
stages of the evolutionary simulations. We therefore examined the 
population dynamics with constant � in the initial 200 generations 
in Eopt, and indeed found initial fitness decrease monotonically with 
robustness (Figure S12).

For populations adapting to Enew, the lowest robustness allele 
(� = 8) is selectively favoured initially (Figure 5c), consistent with 
initial population dynamics with constant robustness under this 
environment (Figure  S8). We compare the evolution trajectories 
of populations with an evolved robustness locus with a fixed level 
of robustness (Figure 5e,f). Figure 5e shows the evolution dynam-
ics in the first 2 × 104 generations. The populations with evolving 
robustness behave similarly to the one with fixed � = 8, suggesting 

F I G U R E  5  Population dynamics with evolving robustness. (a–d) The frequencies of the eight robustness genotypes in five simulations 
with evolving robustness. Each horizontal bar shows one simulation result. For a and c, robustness genotype frequency from every 
1000th generation are plotted. For b and d, robustness genotype frequency from every 50 000th generation are plotted. (a and b) The 
robustness genotype frequency changes over time under Eopt, with a showing the change over the first 2 × 104 generations, and b for 8 × 106 
generations. c and d show the robustness genotype frequency changes over time under Enew , with c showing the change over the first 
2 × 104 generations, and d for 8 × 106 generations. (e and f) Mean fitness change comparison for populations with different fixed levels of 
robustness and one simulation with evolving robustness under Enew. Solid line shows the mean value of the mean fitness of 20 simulations 
with a fixed level of robustness, and the dashed line shows the mean fitness of one simulation with evolving robustness. (e) The comparison 
for the first 2 × 104 generations and every 200th generation is plotted. (f) The comparison for 8 × 106 generations and every 50 000th 
generation is plotted.
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low robustness is preferred at the onset of adaptation. However, 
as the adaptive process continues, the highest robustness geno-
type (� = 0.5) takes over the population permanently (Figure 5f). 
Population mean fitness then proceeds to increase along the tra-
jectory given for fixed � = 0.5, to a stable mean population fitness 
of ≈ 0.7. Thereafter, it does not improve any further. Surprisingly, 
this is not nearly the highest fitness the population could have 
achieved. For example, with fixed � = 2.5, mean fitness rises to 
nearly w = 0.9 (Figure  5f). The high robustness genotype fixed 
early despite the fact that it prevents the population from evolv-
ing to a higher fitness.

We hypothesized that this behaviour could depend on the spe-
cific parameterization or assumptions of the model. We investigated 
these possibilities by varying the mutation rate of the robustness 
locus r and also allowing the robustness locus to recombine with 
v  . We found that decreasing or increasing mutation rates at the ro-
bustness locus increases the equilibrium mean fitness (Figure 6A), 
but they achieve this through different means. A lower mutation 
rate prolongs the time to elimination of low robustness alleles, al-
lowing greater time to select for a more highly adapted phenotype 
(Figure 6A.a). A higher mutation rate increases the number of segre-
gating robustness alleles (Figure 6A.b). Recombination between the 
robustness locus and v also increases the final mean fitness of the 
population (Figure 6B). Indeed, the highest mean fitness is reached 
when at the maximum recombination rate (r = 0.3) between r and v 
in the simulation (Figure 6B.a). These results show that the dynam-
ics of adaptation when robustness can also simultaneously evolve is 
sensitive to the genetic parameters (i.e. mutation and recombination 
rates) of the system.

4  |  DISCUSSION

We believe that this study has established several new insights 
into the relationship between canalization and evolution in multi-
cellular and other eukaryotic organisms. We assayed evolvability 
by comparing changes in the mean fitnesses of populations with 
differing levels of robustness following an abrupt environmental 
change. As established previously (Draghi et al.,  2010), we have 
shown at a qualitative level that maximum evolvability occurs at 
intermediate levels of robustness. In contrast to this result, at a 
quantitative level, we find that in multicellular and other hierar-
chically structured organisms, evolvability occurs at much higher 
levels of robustness in than was reported previously (Draghi 
et al., 2010) and is much more sharply peaked. Moreover, this peak 
in evolvability is discontinuous, and appears to be a consequence 
of disequilibrium caused by variation in the fixation rate. When 
robustness itself can evolve, we find that it attains levels which 
maximize relative fitness, thus insuring lower levels of robustness 
immediately following an environmental change and higher in a 
constant environment. In this section, we present our main theo-
retical findings, compare them with experiment and then consider 
the limitations and implications of this study.

4.1  |  Theoretical findings

At the theoretical level, the model used here has extended the fa-
miliar population genetics picture in three ways. First, we provide a 
mathematical representation of phenotype as the consequence of 
the existence of multiple cell types in a multicellular organism, al-
lowing the treatment of varying degrees of pleiotropy and epista-
sis in the genotype–phenotype map. Second, we provide an explicit 
representation of the emergence of fitness as a result of interactions 
between the phenotype and the environment. Third, we provide a 
quantitative and controllable measure of robustness R, the probabil-
ity that a mutation leaves the phenotype unchanged. Although the 
first two features of this model have been used elsewhere (Grigoriev 
et al., 2014; Reinitz et al., 2019), the ability to control the level of ro-
bustness and measure its effect of evolvability under environmental 
change is a novel feature of this work. The explicit representation 
of environment generalizes different evolutionary regimes, without 
making arbitrary assumptions about the selection coefficient. The 
use of R enables us to make precise and quantitative comparisons 
with other studies. This is a key feature of this work, since it is often 
possible to raise or lower robustness in a model or experimental sys-
tem, but systematic comparisons of results are difficult. Our ability 
to control R in small gradations near unity with the parameter � and 
over a wider range by varying � allows precise control of robustness.

Our results support the idea that high robustness provides the 
best fitness in constant environments. This is in accordance with 
previous modelling results that found that high robustness is pro-
duced as a consequence of stabilizing selection in network models 
applied to a single cell studied in the context of population genetics 
(Bullaughey, 2011; Siegal & Bergman, 2002; Wagner, 1996; Wagner 
et al., 1997). The maintenance of a steady average fitness level in 
the modelled haploid population also supports the picture that ben-
eficial and deleterious mutations tend to an attracting steady state 
(Goyal et al., 2012) in which the fitness of the steady state slowly 
decreases as R decreases from 1.

Our central result is that in response to environmental change, 
the optimal level of evolvability is achieved at values of R around 
0.99. This result sharply differs from that of Draghi et al. (2010). The 
parameter q used by these authors has the same meaning as R used 
here, but we retain the difference in notation since q is directly set as 
a parameter while we control R indirectly.

Draghi and co-workers found a broad peak of evolvability be-
tween q = 0.8 and q = 0.2. This difference between our findings is a 
result of the constraint of multicellularity. In a multicellular organism, 
a single mutation will change many cellular states though pleiotropy, 
and although these changes may not be particularly deleterious to 
individual cells, they can have a drastic effect on fitness at the organ-
ismal level. Draghi et al. (2010) used a model inspired by and tested 
against the phenotype of RNA secondary structure, inherently a 
much less constrained system. Thus, the difference between the 
levels of robustness optimal for evolvability in these two studies is, 
in retrospect, both unsurprising and natural both in terms of the op-
timal level of robustness and the narrowness of the peak obtained. 
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We predict that as further studies are conducted with models that 
represent the increasing level of hierarchical complexity found in 
phenotypes extending from RNA and protein structures to prokary-
otes to single-celled eukaryotes to multicellular organisms, greater 
hierarchical complexity will lead to increasingly high and narrowly 
constrained robustness at optimum evolvability.

The level of optimal robustness for evolvability is not only much 
higher than that reported by Draghi et al. (2010), but also occurs by 
a different mechanism. Inspection of Figure 4d reveals that upon 
challenge with a new environment, the resulting mean fitness in-
creases as R decreases to R = 0.9929 (� = 2.5), but as R decreases 
through values of 0.9915 (� = 3), 0.9901 (� = 3.5) and 0.9887 (� = 4), 
two distinct branches are visible with sharply differing fitnesses. 
The upper branch increases in fitness to R = 0.9887, but becomes 
more improbable and contains fewer and fewer points as R de-
creases, and below R = 0.9887 no instances of high fitness are seen 
in our simulations.

In Draghi et al. (2010, Figure 2), the corresponding curve is single 
valued and smooth. Biologically, our result is the effect of contin-
gent processes in evolution. It is well known that mutations in de-
velopmental selector genes can have major effects on phenotype 
(Lewis,  1978, e.g.) that may be related to macroevolutionary pro-
cesses, but that occurrences of such mutations that are not severely 
deleterious or even lethal are very rare. At the theoretical level, our 
results indicate that evolvability of multicellular organisms must 
be treated with birth–death equations (‘master equations’) using 
jump Markov processes. This fact is a consequence of the nature 

of the modelled system. Draghi et al.  (2010, S.I.) formulated their 
model in terms of the birth–death Moran process and showed that 
it was well approximated by a Fokker–Planck equation in continu-
ous time. The conditions under which such approximations can be 
made (Gillespie, 1992, 2000) do not apply to our model or any model 
in which a rare stochastic event can send the system down one of 
two or more alternative pathways. We interpret the bifurcation be-
haviour in Figure 4d as analogous to the stochastically determined 
selection of developmental pathways of phage � (Arkin et al., 1998). 
A possible analogy in an evolutionary context is a speciation event, 
although detailed exploration of this interpretation is beyond the 
scope of this work. We do suggest that, given the enormous number 
of bifurcations found in the tree of life, this inapplicability of the 
Fokker–Planck diffusion equation is likely to be a general feature of 
future studies of adaptation.

The results reported in Section III indicate that when robustness 
itself is under genetic control, robustness is selected to an initial 
level which is high for constant environments and lower after an 
abrupt environmental change. Thus, as shown in Figure 5a–d, under 
the constant environment Eopt, the highest level of robustness is se-
lected for, but after an abrupt change to Enew, there is a transient 
period of low robustness, followed by a return to robustness levels 
optimal for a constant environment. The responsiveness of robust-
ness to change or stasis of the environment was not phenotypically 
optimal, however (Figure 5e,f), because selection for the lowest level 
of robustness in the steady state appears to freeze in suboptimal 
phenotypes over the long term by premature fixation.

F I G U R E  6  Mutation and recombination rate of robustness locus affects the adaptation process. Relationship of mutation rate of 
robustness locus r and recombination between robustness locus r and genotype v to evolution under Enew. The light grey area shows the 
results with the parameters used in Figure 5. (A) Final mean fitness of populations after 8 × 106 generations with different mutation rates 
of the robustness locus. Each dot represents one simulation. Jittering is applied for simulations with the same mutation rate. (A.a) One 
example simulation of robustness genotype frequency changes over time, with the mutation rate of robustness locus being 10−8. (A.b) One 
example simulation of robustness genotype frequency changes over time, with the mutation rate of robustness locus being 0.1. (B) Final 
mean fitness of populations after 8 × 106 generations with different recombination rates between the robustness locus r and genotype v. 
The recombination rate is the probability that a recombination event occurs between a randomly chosen pair of haploids. (B.a) One example 
simulation of robustness genotype frequency changes over time, with recombination rate being 0.3 per individual per generation.
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We believe that this premature fixation phenomenon reveals 
a role for recombination. Premature fixation can be alleviated by 
either permitting recombination between the robustness control 
locus and other genes or by raising or lowering the mutation rate. 
We view the explanation in terms of altered mutation rate as unreal-
istic. Lengthening the time for purifying selection requires decreas-
ing the mutation rate by two to three orders of magnitude from 10−5 
to an unrealistic level of 10−7 − 10−8 per generation, while improving 
fitness by ensuring that a diverse population of robustness alleles 
is maintained by mutation requires increasing the mutation rate by 
three or four orders of magnitude to a similarly unrealistic level of 
10−1 − 10−2 per generation. We consider our finding that recombi-
nation between the robustness control locus r and v relieves prema-
ture fixation to be mechanistically reasonable, particularly if the high 
recombination rate needed, 0.2–0.3, is interpreted mechanistically 
as r and v segregating on different chromosomes, which were not 
explicitly represented in the model.

There is a notable similarity between the behaviour of the modi-
fier locus described in Section III and the existing theory of modifier 
alleles controlling the mutation rate, given the analogy that a reduction 
in mutation rate and an increase in robustness both decrease fitness 
variations. The theory of mutation modifiers predicts that such modifi-
ers will evolve to maximize the mean fitness (Karlin & McGregor, 1974; 
Liberman & Feldman, 1986). The Unified Reduction Principle (Altenberg 
et al., 2017), a generalization of these ideas, predicts that in equilibrium, 
the allele with the lowest mutation rate will take over, regardless of the 
type of selection. We saw a similar equilibrium behaviour in our model 
in that the modifier allele with the highest robustness takes over the 
population in both of the selection regimes we considered. As is the 
case with classic modifier theory, our model assumes the modifier locus 
controlling robustness is not directly under selection. However, there 
is a major difference between our model and the population genetics 
modifier theory, which has a single equilibrium mean fitness of the pop-
ulation (Goyal et al., 2012). Our model, on the other hand, will result in 
the different equilibrium mean fitness with different levels of robust-
ness because of constraints arising from the genotype-to-phenotype 
map (Figures 3 and 4). The possible unification of classical modifier the-
ory with the results presented here into a more generalized theory is an 
important open problem for future study.

4.2  |  Applicability to hierarchical phenotypes 
in eukaryotes

Although our study was motivated by consideration of the constraints 
inherent to the evolution of multicellular organisms, the coarse-
grained model used is susceptible to broader interpretation. Our 
central result applies to any situation in which multiple genes control 
multiple traits in a many-to-many manner. Such levels of pleiotropy 
are characteristic of hierarchical organization, and in such cases, a sin-
gle mutation will affect a variety of traits, some adaptively and some 
deleteriously. Large deleterious changes—possibly leading to lethal-
ity—in some traits controlled by a given gene will nullify large adaptive 

changes in others. In such a situation, adaptation requires that phe-
notype be strongly buffered against mutation. High pleiotropy under 
hierarchical organization does not apply in relatively nonhierarchical 
systems. Nonpleiotropic counterexamples include the trait of tRNA 
secondary structure which is under the control of a single gene, as 
well the E. coli trait of ability to use lactose as a sole carbon source, 
under the control of the permease gene lacY and �-galactosidase gene 
lacZ. We would expect that this requirement for buffered effects of 
mutations to increase along a gradient of depth of hierarchical or-
ganization from prokaryotes to eukaryotes to multicellular organisms. 
Unicellular eukaryotes such as yeast are much more amenable to ex-
perimental study of evolution than multicellular organisms, affording 
an opportunity for experimental corroboration.

4.3  |  Experimental corroboration in eukaryotes

We have discussed our major findings point by point in terms of 
theory because the amount of evolutionary change directly observ-
able in multicellular organisms is limited by the time scale of feasible 
experiments. These limitations do not exist in unicellular eukaryotes 
like yeast or tissue culture lines. Although quantitative measure-
ments of mutational robustness cannot as yet be performed in ex-
perimental systems, robustness can be increased or decreased in an 
experimental context. Our findings about the genetic control of ro-
bustness adduced above also apply in experimental systems, which 
we now consider.

In agreement with the results reported here, experimental stud-
ies of natural populations at the morphological and molecular levels 
exhibit evidence of high robustness when average population fitness 
is near its optimum. A study of morphological phenotype in yeast 
indicated that Hsp90 not only buffers standing genetic variation in 
populations under selection, but also displays the opposite effect 
for de novo mutations from lines where mutations have not been 
subject to stabilizing selection (Geiler-Samerotte et al., 2016). This 
can be interpreted in terms of our model—natural variants in Hsp90 
exhibit high robustness due to long-term stabilizing selection. De 
novo mutations from mutation accumulation studies in the labora-
tory, on the other hand, which have not been filtered through se-
lection, can display a wide range of robustness levels. Similarly, a 
study of the yeast TDH3 promoter shows polymorphisms in natural 
populations have less expression noise than random mutations, indi-
cating that natural selection maintains mutations with high robust-
ness (Metzger et al.,  2015). Our result that environmental change 
induces a selectively advantageous loss of robustness is supported 
by extensive studies over decades in bacteria, yeast and cancer cells 
(Galhardo et al., 2007, for review).

4.4  |  Limitations

The use of Boolean models in this study has both advantages and lim-
itations. The key advantage is computational simplicity in addressing 
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otherwise unanswerable generic questions about evolution, a point 
first established in the groundbreaking and transformative work of 
Kauffman (1969), which established the capability of completely ran-
dom genetic networks to self-organize and canalize. Later studies 
with such models explicitly treated the effects of fitness (Kauffman 
& Weinberger, 1989). In this work, we modelled populations of 104 
individuals, each containing 104 genes controlling 103 traits, which 
interact with an environment containing 103 features over about 107 
generations. This population size is large or completely unreach-
able in terms of laboratory experiments on metazoa, and the num-
ber of generations modelled is equivalent to about 300 000 years 
in a Drosophila population with a 10-day generation time, or about 
380 years for a bacterial chemostat experiment involving organisms 
that divide every 20 min. The price of such evolutionary realism in 
time scale and population size is a severe coarse-graining of the in-
ternal states of the model.

This coarse-graining of internal states means that we do not 
consider constraints imposed by the chemical and physical imple-
mentation of living systems. This failing is a property of Boolean 
models as a class. They are ill-suited to detailed comparison with 
experimental data, particularly at the molecular level. Such data 
almost never presents itself to the experimentalist in unambigu-
ous terms of ZERO and ONE. Concomitantly, the components of 
Boolean models cannot be compared in an unambiguous and one-
to-one manner with experimentally manipulable entities such as 
promoters, enhancers and enzymes. Given current limitations on 
both the fundamental understanding of biological systems and on 
available computing power, it is difficult to see how this limitation 
to generic evolutionary processes can be overcome in the near 
future.

In terms of establishing generic properties of multicellular evo-
lution, we believe that the main limitation of this study is that it con-
siders the effects of the hierarchical nature of organismal fitness 
arising from the interplay of many cellular states, but fails to con-
sider the constraint imposed by the fact that multicellular organisms 
develop from a single cell over time. It has been suggested that a 
key mechanism of evolutionary change is alteration of the relative 
timing of developmental events, a phenomenon known as heteroch-
rony (Gould,  1977). Addressing the effect of heterochrony on the 
relationship between canalization and evolvability requires incor-
porating ontogeny explicitly into a population genetics picture of 
evolution. Previous work has shown that generic models of the evo-
lution of ontogeny have the potential to answer important questions 
about evolution, but computational obstacles remain (Mjolsness 
et al., 1995).

We did not explicitly consider the evolution of the genotype–
phenotype map in this study, but we consider it a limitation less se-
vere than the ones discussed above. Fixing the genotype–phenotype 
map was an ansatz used to clarify the role of the evolution of devel-
opmental control genes as distinct from those controlling basic cel-
lular processes, and appears to be a necessary choice at the level of 
mechanistic resolution used here.

4.5  |  Implications

The key ideas about canalization are all present in Waddington's orig-
inal short article (Waddington, 1942), a work whose intellectual fe-
cundity is nothing less than astonishing. The dynamical metaphors in 
this article inspired Rene Thom to construct an entirely new branch 
of mathematics (Thom, 1969, 1975). Among evolutionary biologists, 
Waddington's work was seen in terms of phenotypic robustness 
to genetic variation, the relief of which tended to increase evolv-
ability (Félix & Barkoulas, 2015; Masel & Trotter, 2010, for reviews). 
This latter viewpoint found experimental support in the phenotypic 
properties of single cell organisms, protein and RNA structure, and 
models of single cell networks. And yet, what Waddington presented 
is an attempt to solve the seemingly Lamarckian phenomenon of 
adaptation to the environment by the non-Lamarckian mechanisms 
established by genetics. He did so specifically in terms of animal 
development, stating that ‘There seems, then, to be considerable 
amount of evidence from a number of sides that development is can-
alized in the naturally selected animal (Waddington, 1942, p. 564)’. 
Moreover, he argued that canalization itself led to adaptation in or-
ganisms which undergo development: ‘The particular application of 
this general thesis which we require in connexion with “the inherit-
ance of acquired characters” is that a similar canalization will occur 
when natural selection favours some characteristic of which the 
environment plays an important part (Waddington, 1942, p. 564)’.

This tension between Waddington's original idea that canaliza-
tion is required for adaptation and the modern consensus that ca-
nalization must be relieved for adaptation to take place is resolved 
by the results presented in this article. On the one hand, we find all 
elements of the modern consensus present in the results considered 
here. High robustness leads to better fitness in a constant environ-
ment, and lower robustness leads to higher fitness during adapta-
tion following an abrupt environmental change. At the same time, in 
multicellular organisms, the absolute levels of robustness are close 
to unity and ‘relief’ of robustness still involves values of R above 
0.98. This contrasts sharply with the result of a non-multicellular 
model where optimal robustness ranged from 0.2 to 0.8 (Draghi 
et al., 2010). Resolving this apparent paradox required the use of a 
quantitative measure of robustness used with a model that explicitly 
represented multicellularity, phenotype and environment.

Although we believe that we have resolved an important issue 
arising from Waddington's article, many important questions remain 
unresolved. A key issue is Waddington's proposal that adaptation 
occurs by the genetic assimilation of traits that arise from pheno-
typic plasticity. Neither of these mechanisms were incorporated into 
the model considered here. Genetic assimilation was experimen-
tally demonstrated in an artificial situation by Waddington  (1953). 
Nevertheless, any form of adaptation, with or without phenotypic 
plasticity, can be viewed as a response to the environment. In natu-
ral situations, such as eye loss in the cavefish (Rohner et al., 2013), 
selection on phenotypic plasticity cannot be distinguished from se-
lection on an increased range of genetically determined phenotypes 

D
ow

nloaded from
 https://academ

ic.oup.com
/jeb/article/36/6/906/7576952 by guest on 09 June 2024



922  |    JIANG et al.

produced by decanalization. One central unanswered question is the 
relative roles of these two processes over the course of evolutionary 
time.

More generally, the work reported here represents a small step 
towards resolving a theoretical tension at the heart of evolutionary 
biology. Evolutionary theory is formulated in terms of population 
genetics, in which the effects of genes are additive, with epistasis 
present in at most a small corrective term. In contrast, developmen-
tal genetics itself and consequently the theories describing it are 
entirely epistatic, with no additive behaviour at all. This tension has 
been noted by Erwin and Davidson (2009), although no theoretical 
solution was provided. Naturally, improved comparative develop-
mental analyses of diverse organisms at the molecular level will be 
important. In addition, we believe that new mathematical ideas by 
theoreticians will be of great value.
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