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Two-time-scale population evolution on a singular landscape
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Under the effect of strong genetic drift, it is highly probable to observe gene fixation or gene loss in a population,
shown by singular peaks on a potential landscape. The genetic drift-induced noise gives rise to two-time-scale
diffusion dynamics on the bipeaked landscape. We find that the logarithmically divergent (singular) peaks do
not necessarily imply infinite escape times or biological fixations by iterating the Wright-Fisher model and
approximating the average escape time. Our analytical results under weak mutation and weak selection extend
Kramers’s escape time formula to models with B (Beta) function-like equilibrium distributions and overcome
constraints in previous methods. The constructed landscape provides a coherent description for the bistable system,
supports the quantitative analysis of bipeaked dynamics, and generates mathematical insights for understanding
the boundary behaviors of the diffusion model.
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I. INTRODUCTION

Interactions among multiple biological effects (genetic
drift, mutation, selection, etc.) can cause different evolutionary
behaviors of a population. These effects may operate on
different time scales [1]. One of the most important issues in the
study of evolutionary models is to describe and separate the
multi-time-scale dynamics by calculating the corresponding
operating times [2]. Of special interests is the calculation of
waiting time for rare events to occur [3,4]. Similar problems
have been referred to in physics, chemistry, engineering,
and biology in close connection to the concept of adaptive
landscape or potential energy function [5–7]. In population
biology, evolution was found not to be limited by the rate
toward local adaptive peaks but by the peak-to-peak transition
rate on the landscape [8], as stated by Wright’s shifting-balance
theory [5]. The peak-to-peak transition was found closely
related to the mechanisms of adaptation, divergence, and
speciation [9]. Results on the transition rates and the multiple
time scales were found to be important for studying biological
robustness [10]. Similar ideas and methods have been widely
discussed outside biology [11,12].

Typically, a multipeak landscape implies the separation of
time scales of uphill (driven by deterministic factors) and
downhill [driven by stochastic factors (or noise)] population
evolution. In chemistry, where the energy function acts as an
adaptive landscape, the known Arrhenius formula estimates
the separation factor to be an exponential term of the valley
depth [13]. The separation of time scales has also been
systematically studied in physical systems where a potential
function exists [14,15]. In evolutionary biology, however,
lack of theoretical generality of the adaptive landscape itself
has made this classical concept and its quantitative utility
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controversial [16–19]. There is no associated method for the
general calculations of the peak-shifting rates on a general
landscape. In more recent literature, on the other hand, there
is re-emerging interest in studying the evolutionary potential
function from a physical point of view [7,11,20,21]. Many
have tried to link statistical mechanics to biological evolution
by noticing that the process to approach the equilibrium
distribution maximizes a free fitness function [22–24].

In this article, we are motivated to apply a dynamical
framework proposed by one of the authors of this article [20]
to study the biological evolution from a dynamical point of
view. It breaks certain constraints of the previous statistical
mechanics-based methods as it contains the unbiased steady-
state information of the stochastic model while not requiring
the existence of equilibrium distribution. The framework con-
structs the adaptive landscape as a potential function in general
stochastic processes, integrating all the biological factors in the
formulation. In comparison with Wright’s original adaptive
landscape that only manifests selection, we call it potential
landscape to avoid ambiguity. The potential landscape extends
Wright’s adaptive landscape to more general contexts and has
already been applied to many biological models [7,25–27].

Here we study the classical Wright-Fisher process [28,29].
With the potential landscape, we are able to investigate the
genetic drift-induced bistability of the model. In comparison,
most previous analyses were based on the selection-induced
bistability, which is confined to strong selection cases [8,30].
The genetic drift-induced noise has a nonuniform intensity
distribution which vanishes at the boundaries. It causes
singular potential peaks on the landscape and makes the
calculation of escape time conceptually difficult if confining
to the classical conclusions [13]. By computer iterations of
the discrete model, we observe a two-time-scale evolution
on the singular landscape. We then find an analytical way to
revise the classical results to fit in the present types of models
and obtain analytical approximations for the escape time from
the singular potential peak. We also discuss the connection
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between the mean first passage time (MFPT) and the escape
time in this biological model, a key issue [15] often ignored
by population geneticists [31,32].

In comparison with previous rate formulas obtained from
the diffusion model [14,15], the present results are not based
on the assumption of a Gaussian-like probability distribution
near a potential peak but come from the direct analysis of
the B distribution near the boundary states. Another typical
approach is to calculate the eigenvalue of diffusion equations
[8] as the transition rate. However, this method does not
apply to weak selection cases or the selection-free evolution
[4]. A third method from population genetics (appearance
rate of the mutation that is destined to fix [1,31]) works for
weak selection but fails under more complex situations (e.g.,
where fixation is not possible or the selection is frequency
dependent). To compare, our dynamical approach has no
certain biological constraints and is generally applicable in
these cases. The constructed landscape extends the fitness
landscape, in a way allowing general description of the model
under various biological factors. All factors are treated in a
consistent manner.

The present article is organized as follows: In Sec. II,
we introduce the one-dimensional (1D) diffusion process and
construct a potential landscape. In Sec. III, we analyze the
uphill and downhill landscape dynamics under strong genetic
drift and other factors. In Sec. IV, we iterate the discrete
model, get the numerical escape time, and then obtain the
analytical approximations under weak mutation and zero
or weak selections. In Sec. V, we compare our methods
and results to previous work. We also discuss the relation
between the MFPT and the escape time. We conclude with the
mathematical condition for fixation in singular potential and
other boundary behaviors of the diffusion model based on the
present results.

II. WRIGHT-FISHER MODEL AND POTENTIAL
LANDSCAPE

A. Diffusion process

The 1D Wright-Fisher model considers the evolution of a
diploid population at one locus. The number of individuals
in a population is a fixed constant N and the generations
are nonoverlapping. Denote the alleles of interest as A1

and A2; the total number of the gene copies of A1 and A2

in the population gene pool is 2N . In the present article,
we mainly study the continuous diffusion approximation of
the Wright-Fisher model (assume N is big enough for the
continuous approximation). Let the frequency of A1 gene be
x, so the frequency of A2 is 1 − x. Let ρ(x,t) be the probability
distribution of A1 at time t . The diffusion equation or Fokker-
Planck equation (FPE) for the continuous Wright-Fisher model
is given by [28,29,33] the following:

∂tρ(x,t) = 1
2∂2

x [V (x)ρ(x,t)] − ∂x[M(x)ρ(x,t)]. (1)

M(x) is the average change of the A1 frequency per generation,
corresponding to the deterministic factors of the system. V (x)
is the variance of the stochastic factors (noise). For example,

under mutation and selection,

M(x) = −μx + ν(1 − x) + x(1 − x)

2ω

dω

dx
, (2)

where μ is the mutation rate from A1 to A2, ν is that from A2

to A1, and ω gives the average fitness of the population in that
generation, which depends on x. Under random genetic drift,

V (x) = x(1 − x)

2N
. (3)

The population size N measures the intensity of genetic drift.
In the 1D model, by assuming zero probability current

at system equilibrium (t = +∞), the equilibrium probability
distribution of Eq. (1) can be easily obtained as follows [13]:

ρ(x, + ∞) = 1

V (x)
exp

[ ∫ x 2M(y)

V (y)
dy

]/
Z

= exp

[ ∫ x 2M(y) − V ′(y)

V (y)
dy

]/
Z, (4)

where the normalization constant Z is given by

Z =
∫ 1

0
exp

[ ∫ x 2M(y) − V ′(y)

V (y)
dy

]
dx. (5)

B. Potential landscape

Taking the analogy between statistical mechanics and
population genetics, we note the equivalent roles played by
the potential energy function and the adaptive landscape, both
of which give the stability information and the long-term
evolution direction of the system. For the FPE in Eq. (1), one
of the present authors proposed a decomposition scheme that
gives a potential landscape construction [20]. It is derived by
the study of the general stochastic different equation (SDE) that
is closely connected to Eq. (1) [34]. The potential landscape
takes the following form [20]:

�(x) =
∫ x 2M(y) − V ′(y)

V (y)
dy

.=
∫ x f (y)

D(y)
dy. (6)

Here we have defined a directed force f (x) and an undirected
diffusion term D(x), which are closely related to the system’s
long-term dynamics,

f (x) = M(x) − 1
2V ′(x), (7)

D(x) = 1
2V (x). (8)

A combination of of Eqs. (4) and (6) immediately suggests
the physical validity of the potential function �(x) in the
Boltzmann-Gibbs distribution (if the equilibrium distribution
exists, Z < +∞) in statistical mechanics [7],

ρ(x, + ∞) ∝ exp

[
�(x)

ε

]
. (9)

Here ε is a non-negative constant, playing the role of
temperature. We can set ε = 1 because we only care about
the relative values of the potential function as a landscape.
The potential landscape integrates all biological factors of
the model, corresponding exactly to the long-term dynamics:
Populations tend to move from the valleys to the peaks
on the landscape [see Sec. IIIC]. This is in comparison to
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the classical fitness landscape, which cannot give a direct
dynamical description for evolution in many cases [19].

We can specify Eq. (6) in the Wright-Fisher model under
the effects of genetic drift, mutation, and selection [33] by
considering different forms of Eqs. (2) and (3) as follows:

�(x) = − ln x(1 − x) + 4N [ν ln x + μ ln(1 − x)] + 2N ln ω.

(10)

Note that ln ω is the classical fitness landscape, here a part
of the potential landscape. In the 1D model (where the
detailed-balance condition always holds), Eq. (10) can be
derived from the the Boltzmann-Gibbs distribution if in Eq. (5)
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FIG. 1. (Color online) Potential landscapes and corresponding
equilibrium distributions under different parameter settings in the
Wright-Fisher model, differentiated by both the colors and Roman
indexes. In all cases (except VII) there is N = 50. The following five
landscape contours are generated from Eq. (11) under mutation and
genetic drift: Red (I): μ = ν = 0. Green (II): μ = 0.0005,ν = 0.001.
Blue (III): μ = ν = 0.005. Yellow (IV): μ = 0.005,ν = 0.001. Ma-
genta (V): μ = 0.01,ν = 0.001. The last two are generated from
Eq. (40) with selection: Cyan (VI): μ = ν = 0.002,s = 0.1. Black
(VII): μ = ν = 0.002,s = 0.1,N = 200. The two red (I) arrows in
(b) denote the Dirac δ functions.

Z < +∞ [24,35]. The present dynamical landscape approach
shows salient differences to these methods when Z = +∞ or
in higher-dimension models with nongradient flows or even
limit cycles [27,36,37].

From this expression, the potential function does not gen-
erally change proportionally with the inverse of the population
size 1/N . In this sense, the inverse population size does not
directly correspond to the temperature in thermodynamics,
which differs from previous work in applying statistical
mechanics to population genetics [24]. To show this, we give
an example in Fig. 1, where case VI (cyan) and case VII
(black) differ only in population sizes (N = 50 and N = 200).
The change of 1/N induces the disproportional changes of the
potential values and the stabilities of x = 0 and x = 1/2 states:
x = 0 is stable in case VI but unstable in case VII; x = 1/2 is
unstable in case VI but stable in case VII. This property of N

is not a desired property for a temperature equivalent.
With the analytical form of �(x), we may classify the

Wright-Fisher diffusion models under different parameters
according to their long-term behaviors. Several examples of
typical Wright-Fisher systems are given in Fig. 1.

III. BISTABLE DYNAMICS UNDER STRONG
GENETIC DRIFT

A. Mutation and genetic drift

To start with, we consider the simplest mutation-drift case
[we neglect selection by taking ω ≡ 1 for all population states
x ∈ [0,1] in Eq. (10)],

�(x) = (4Nν − 1) ln x + (4Nμ − 1) ln(1 − x). (11)

It contains all the linear forms of M(x) and thus covers
other typical cases such as the one-island migration [38]. A
classification of system dynamics can be easily made by using
this expression. We summarize in Table I different dynamical
behaviors presented by different landscape shapes for the
whole parameter ranges that are biologically meaningful
(μ,ν > 0). Note that all these mutation-drift models corre-
spond to the usually termed “neutral evolution” in population
biology, because there is no biological selection in the models.
In the sense of probability distribution, the term “neutral
evolution” may be reconsidered, as in most of these cases the
potential landscapes (as are the equilibrium distributions) are

TABLE I. Classification of the mutation-drift model with chang-
ing mutation rates μ and ν (N fixed). x = a is the unique fixed point
in the system defined in Eq. (12). Its stability is determined by the
sign of �′′(a). The boundary values of �(x) is directly calculated
from Eq. (11). The landscape configurations are determined by above
factors.

μ ν Fixed point a �(0),�(1) Shape of �(x)

< 1
4N

< 1
4N

(0,1)/Unstable +∞,+∞ ⋃
shaped

> 1
4N

> 1
4N

(0,1)/Stable −∞,−∞ ⋂
shaped

= 1
4N

= 1
4N

N/A 0,0 Flat

< 1
4N

> 1
4N

Outside (0,1) +∞,−∞ Left skewed

> 1
4N

< 1
4N

Outside (0,1) −∞,+∞ Right skewed
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not flat. The evolution is thus directed or “unneutral” in a way.
In the bistable cases (4Nν,4Nμ < 1), for example, the system
has a “preference” on the two fixation states x = 0 and x = 1,
shown by the two potential peaks. The long-term evolution
is not really “neutral.” From Table I, only the special μ =
ν = 1/(4N ) case has a flat landscape (Fig. 1), implying equal
probabilities for different states to be occupied by a population.

To maintain a bistable system, we set 4Nν,4Nμ < 1. There
is a unique valley state (saddle point) of the landscape in (0,1),
here we denote as x = a,

a = (1 − 4Nν)/(2 − 4Nμ − 4Nν), (12)

satisfying �′(a) = 0 and �′′(a) > 0 (unstable). Such a valley
point defines two attractive basins (0,a) and (a,1). The directed
force that drives a population toward a potential peak is

f (x) = −μx + ν(1 − x) − 1 − 2x

4N
. (13)

Obviously x = a is the unique zero point of f (x). The
diffusion term is

D(x) = x(1 − x)

4N
. (14)

All possible configurations of potential landscapes in the
mutation-drift systems are shown in Fig. 1.

B. Two time scales: Single population’s view

The movements of a population on a landscape can be
typically classified into two fundamentally different types:
uphill and downhill processes, often demonstrated to operate
on two different time scales [39]. The uphill movements
toward potential peak are dominated by the directed force and
often considered processing in a shorter time scale (denote
as T1). The stochastically driven downhill process can result
in moving away from the peak, crossing over the saddle and
escaping to other attractive basins, which is considered to be
in a much longer time scale T2. Figure 2 gives an illustration.
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FIG. 2. (Color online) Visualization of the two-time-scale dy-
namics on a typical bistable landscape in the present model. It gives
the most probable state of a population (denoted as a balloon, which
always searches for a higher “altitude” to stay) in different time
scales (T2 � T1) visualized on the potential landscape. The parameter
setting satisfies μ < ν � 1/(4N ).

C. Uphill dynamics

The uphill valley-to-peak evolution is mainly driven by the
directed force f (x). To see this, we refer to the Langevin
equation or SDE that separates the directed and the undirected
(noise) terms. It describes essentially the same evolutionary
process with the FPE Eq. (1) but from the point of view
of a single population (instead the probability density or the
ensemble of infinite many populations)’s evolution [34],

ẋ = f (x) + ζ (x,t). (15)

Here ẋ = dx/dt denotes the change rate of x. The Gaussian
white noise ζ (x,t) has variance D(x). The directed force f (x)
is just our Eq. (7). We note that there are infinite possible
ways to choose the directed force, which is decided by how
we connect an FPE to an SDE [34]. Here our choice of f (x)
comes from taking the zero-mass limit (a physical realization)
of a Brownian particle system described by Eq. (1) [34]. By
averaging out the effect of noise, we obtain the directed rate
as follows:

ẋ = f (x). (16)

Note that this differs from taking the infinite-population limit
of the model (N → +∞, a typical way of obtaining the
deterministic limit in population genetics), which gives a
deterministic force M(x). Actually, f (x) combines the effects
of M(x) and D(x) as shown in Eq. (7). Intuitively, the
nonuniformly distributed noise has effect on the direction of
long-term evolution. The deterministic rate alone may not be
able to describe the direction of system evolution.

It is easy to verify that � is nondecreasing along the noise-
free evolutionary trajectory of a population,

�̇ = �′(x)ẋ = f 2(x)/D(x) � 0. (17)

This manifests Wright’s essential idea of a proper landscape
to visualize the uphill evolution [5].

Under strong genetic drift (4Nν,4Nμ � 1), the directed
force f (x) is near linear. We can always take the approximation
form f ≈ −|F |x̄ (|F | measures the magnitude of f (x); x − a

is replaced by x̄ to give the distance between x and a). The
solution of Eq. (16) takes the approximate form,

x̄(t) ≈ x̄(0) exp(−|F |t) .= x̄(0) exp(−t/T1), (18)

where x̄(0) gives the initial state of the population and T1 is
usually called the relaxation time [40]. Under strong genetic
drift, the uphill rate is

ẋ = f (x) ≈ −(1 − 2x)/(4N ). (19)

For x < 1/2, a population is expected to move toward x = 0;
for x > 1/2, it is expected to move toward x = 1. This is
consistent to the biological expectations, that a population will
be fixed at either all A1A1 state or all A2A2 state, conditioned
on the initial population state. The first evolutionary time scale
for reaching the local potential peak is then

T1 ∼ |F |−1 = 2NO(1), (20)

the typical operating time scale of genetic drift [1].
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D. Downhill dynamics

The downhill dynamics is considered as the accumulation
of rare downhill movements driven by noise. The process can
be characterized by the waiting time τ for such rare effects to
grow big enough to cross the valley state. A population thus
escapes from the original attractive basin, goes through the
potential valley and stays stable in another attractive basin. In a
diffusion model with a finite potential barrier (here valley) ��,
Kramers’ classical formula estimates the escape time as [14]

τ ∼ T1 exp (��). (21)

The exp (��) is also called the Arrhenius term [13].
For the downhill dynamics in the present case, the classical

formula would give an estimation of infinite escape time from
singular potential peak: From Eq. (11), there is �(0) = +∞,
which leads to �� = �(0) − �(a) = +∞. Then, by Eq. (21),
we get

τ = +∞. (22)

Under pure genetic drift (ν = μ = 0), this infinite escape
time is expected (see Sec. V D). If, however, there is additional
biological factors such as mutation in the system, the infinite
escape time may not be a good estimation. Biologically, even
though genetic drift (noise) vanishes at the boundary, mutation
will constantly push a population away from the fixation state
of A2 by introducing new A1 mutants, which makes the gene
substitutions possible [4]. Mathematically, Eq. (21) causes an
unexpected discontinuity of the escape time with changing
mutation rate ν, whereby τ/T1 changes from +∞ to 1 as
4Nν → 1 (the potential peak at x = 0 vanishes then; see Table
I). In the next section, we obtain better estimations for τ by
simulating the Wright-Fisher model and calculating the MFPT.

IV. ESCAPE TIME IN INFINITE POTENTIAL

A. Two time scales: Distribution’s view

If τ �= +∞, we expect that ρ(x,t) undergoes two distinct
stages of evolution on the bipeaked potential, similarly to the
dynamics near a finite potential peak. This is because the
divergence of the peak is at a relatively slow rate [log-scale, see
Eq. (11)] in a finite space [0,1]. The singularities only appear
at the two boundary states. The leaking flow of probability
density (which is approximately constant in the second stage of
evolution) from an attractive basin makes the escape possible
[15]. We assume that the flow rate obeys an exponential law
as follows:

Z0(t) − Z0(+∞) = �0 exp(−λt). (23)

Here �0 is the space integral of a time-independent function
characterizing the shape of the probability distribution, which
approximates a constant value in the second stage evolution.
λ is the average leaking rate of probability or the escape rate
[15]. We define the cumulative probability density Z0(t) in the
attractive basin (0,a) as

Z0(t) =
∫ a

0
ρ(x,t)dx. (24)

The leaking rate of Z0(t) changes with time, during which
the global equilibrium between different local equilibria is

being established [8]. We may characterize this process by the
inverse of the average leaking rate T2 = 1/λ, which also gives
the time scale to establish the global equilibrium.

Note that the leaking rate is the sum of contributions from
both attractive basins (λ = λ0 + λ1 = τ−1

0 + τ−1
1 ). Transitions

in the two directions will eventually balance each other as
t → +∞ at the global equilibrium,

τ−1
0 Z0(+∞) = τ−1

1 Z1(+∞). (25)

Here Z1(t) = 1 − Z0(t) is the cumulative probability density
in (a,1). In the long-term evolution, the escape time from the
(0,a) basin is given by [15]

τ0 = 1

λ[1 − Z0(+∞)]
. (26)

To verify the above theory in the present biological process,
we simulate the change rate of the probability vector P (t) in the
discrete Wright-Fisher model. We also plotted the solution of
ρ(x,t) in the continuous model [28]. The results in Fig. 3 show
a clear two-time-scale structure of landscape dynamics. With
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FIG. 3. (Color online) Real-time iterations and continuous solu-
tions of the Wright-Fisher process under mutation and random drift.
The bars presents the time iterations of the discrete model. The dotted
lines are the analytical solution of ρ(x,t) in the 1D continuous model.
The x axis gives the number of A1 alleles i and the y axis is the
probability distribution p(i) (notation in accordance with Appendix
C). Parameter settings: 2N = 20, μ = 0.0005, ν = 0.0015. Panel (a)
shows that the initial state is set to x = 0.2. Panel (f) shows the
establishment of equilibrium distribution after long-enough time.
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FIG. 4. Simulation of the escape rate from the attractive
basin (0,a) under mutation and drift. Parameter settings are as
follows: N = 30, μ = 0.0001, ν = 0.0005. Panel (a) describes
how the cumulative probability density in (0,a) attractive basin
Z0(t) [defined in Eq. (24)] changes with time. Panel (b) gives
the change of value − ln[Z0(t) − Z0(+∞)], whose slope gives
the flux rate between the two attractive basins. The inset fig-
ure zooms into the first time scale. The simulated values are
T̂1 ≈ 62.77 [regressing the steady exponential interval (0,N)],T̂2 ≈
1464,τ̂0 ≈ 1755. Under the same setting, the theoretical expectations
are as follows: T1 = 60, T2 = 1666, τ0 = 2000.

the probability densities initialized in (0,a), the decreasing
rate of Z0(t) is strictly exponential [Fig. 4(a)]. Taking the log
scale [Fig. 4(b)], the regressed slope gives the escape rate
toward the global equilibrium or the sum of the leaking rates
in the two directions (λ = λ0 + λ1). The decay rate shows a
rigorous exponential distribution, except for the sudden drop
at the beginning period of time (∼T1 ≈ 20 in the example),
when the local equilibria have not yet been established. In
Fig. 4(b), the inset figure shows that the first period dynamics
is also approximately exponential, consistent with our analysis
in Sec. IIIC. We obtain the regressed decay rates of the two
distinct stages, which are approximately the inverse of the
two-time-scale estimations (see the figure caption for details).
The simulation validates the assumption of the two-scale
dynamics, even though the potential peak at x = 0 is singular

and the established local equilibrium is not Gaussian. In the
next section, to get an analytical estimation of τ , we study the
mean first passage time in the infinite potential peak.

B. MFPT in infinite potential

Back to single population’s view, one may calculate the
mean first passage time (MFPT, or TMFP) between two states
x0 and x1 by referring to the backward equation of Eq. (1) as
follows:

[f (x) + εD′(x)]∂xTMFP(x0) + εD(x)∂2
xTMFP(x0) = −1. (27)

Without loss of generality, we study the stochastic jump out
of the attractive basin (0,a). We study a population’s MFPT
through the valley point x = a to some state x1 > a, starting
from x0 ≈ 0 in (0,a). The interval of interest is set as [0,x1],
with x = 0 the reflecting boundary and x = x1 the absorbing
boundary [13],

∂xTMFP(x = 0) = 0, (28)

TMFP(x = x1) = 0. (29)

Note that the setting of absorbing boundary is reasonable
in the sense that we temporarily only care about the first
time a population reaches a state x1. The rejecting boundary
is biologically manifested by the nonzero forward mutation
(ν �= 0) but fails when ν = 0. We will show that the escape
time under the limit ν → 0 converges to the same result. The
solution of Eq. (27) is

TMFP(x0 → x1) =
∫ x1

x0

exp[−�(y)]

εD(y)
dy

∫ y

0
exp[�(z)]dz.

(30)

Here � is the potential landscape in Eq. (6). There is no
assumption on the configuration of � (finite peak, etc.) when
applying Eq. (30). The relation between MFPT and escape
time depends on the landscape shape (see Sec. IV C) [15].
Here under mutation and random drift,

TMFP(x0 → x1) = 4N

∫ x1

x0

y−4Nν(1 − y)−4Nμdy

×
∫ y

0
z4Nν−1(1 − z)4Nμ−1dz. (31)

The integral term z4Nν−1 near z = 0 accounts for the infinity
of potential peak (and possibly infinite escape time). As
4Nν,4Nμ → 0, the main contribution of the above integral
comes from the inner integral in a small interval [0,y] (y < a),
that is, the incomplete B function B(y; 4Nν,4Nμ). Under the
same limit, we numerically found that it is approximated by
y/(4Nν). Meanwhile, the term y−4Nν(1 − y)−4Nμ in the first
integral is approximately constant when 4Nν,4Nμ � 1. The
whole integral is presumably approximately of a scale 1/ν. To
make this estimation accurate, we thus expand the incomplete
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B function in Eq. (31) near z = 0 under 0 < 1 − x1 < 1 − y <

1 − z < 1 as follows:

B(y; 4Nν,4Nμ) =
∫ y

0
z4Nν−1(1 − z)4Nμ−1dz,

=
∫ y

0
z4Nν−1

( ∞∑
n=0

zn

n∏
k=1

k − 4Nμ

k

)
dz,

= y4Nν

4Nν
+

∞∑
n=1

yn+4Nν

n + 4Nν

n∏
k=1

k − 4Nμ

k
.

(32)

The convergence of the expansion is obvious given 0 < y <

x1 < 1. Substituting B(y; 4Nν,4Nμ) and expanding (1 −
y)−4Nμ in the outer integral of Eq. (31), we obtain

TMFP(x0 → x1) = x1 − x0

ν
+ 4Nμ

ν

∞∑
n=1

xn+1
1 − xn+1

0

n + 1

×
n∏

k=2

(
k − 1 + 4Nμ

k

)
+ 4N (1 − 4Nμ)

×
∞∑

n=1

xn+1
1 − xn+1

0

(n + 1)(n+ 4Nν)

n∏
k=2

(
k − 4Nμ

k

)
.

(33)

The expansion converges under ν > 0, μ < 1/(4N ). For the
two limiting cases we have the following:

(1) ν → 0: The expansion of Eq. (32) becomes invalid.
The leading term of the expansion changes from y4Nν/(4Nν)
to ln y, which then becomes sensitive to x0 near 0. To ensure
the convergence of TMFP(x0 → x1) as x0 → 0, we need ν �= 0;
this is the condition for the escape problem (from x = 0) to be
finite (as we have discussed in Sec. III D). On the other hand,
we always have TMFP(0 → x1) → ∞ as ν → 0.

For ν = 0, however, the expansion in Eq. (32) will not be
valid. We have instead

B(y; 4Nν,4Nμ) = ln y +
∞∑

n=1

n∏
k=1

(
k − 4Nμ

k

)
yn

n
, (34)

The leading term changes from the polynomial order ∼y−1 to
the logarithmic scale, which becomes sensitive to the value of
x0 near 0 and approaches infinity at x0 = 0.

(2) μ → 1/(4N ): The expansion of (1 − y)−4Nμ would not
converge for x1 → 1, as the resulted series would then become
a divergent harmonic series. This is also illustrated by the
vanishing bistability of the system when 4Nμ = 1 (Fig. 1 case
IV, yellow). The escape dynamics then becomes irrelevant.
To ensure the convergence of Eq. (33) as x1 → 1, we need
μ < 1/(4N ).

C. Escape time

From the results above, we are able to calculate the MFPT
between any two states x0 and x1 (0 � x0 � x1 � 1). The
relation between the MFPT and the escape time τ is not
always direct. The escape time is defined as the inverse
of the average probability rate through the potential valley
x = a [14]. In a finite-barrier diffusion process, the escape

time was shown to be approximated by TMFP(0 → x1) for
x1 ≈ a,a < x1 < 1 and takes the Arrhenius exponential factor
[13]. Previous approximation methods are mainly established
on the following two assumptions: (1) A “sharp” valley around
x = a on the landscape and (2) Gaussian-like local probability
distribution around x = 0. However, these two assumptions
fail in the present type of model, as the landscape usually
has “fat” valleys and singular peaks under strong genetic drift
(Fig. 1). The local equilibrium established near a potential is
not Gaussian [8].

On the present landscape surface, a population may have
considerable probability to return back to x0 immediately (in
time T1) after its first arrival at x = a. We may not approximate
τ directly by TMFP(0 → a) here. In general diffusion cases
with an axisymmetric landscape (with axis x = a), it is
demonstrated that TMFP(0 → a) should be compensated by
a factor of 2 when approximating the escape time [15]. Under
4Nν,4Nμ � 1, we have by Eq. (12) that a ≈ 1/2 and the
approximately axisymmetric landscape. The escape time τ0 is
then approximated by the following (taking x0 → 0):

τ0 ≈ 2 × TMFP(0 → a)

≈ 1

ν
+ 4Nμ

ν

∞∑
n=1

2−n

n + 1

n∏
k=2

(
k − 1 + 4Nμ

k

)

+ 4N (1 − 4Nμ)
∞∑

n=1

2−n

(n + 1)(n + 4Nν)

×
n∏

k=2

(
k − 4Nμ

k

)
. (35)

Under 4Nν,4Nμ � 1, τ0 is approximately independent of the
initial state x0 in Eq. (35). The escape time is dominated by
the leading term of the series 1/ν, added by a remaining term
of order 4Nμ/ν,

τ0 ≈ (1 + 1.23Nμ)

ν
, (36)

The coefficient 1.23 is a numerical approximation of the
remaining series in Eq. (35). The error is of order o(Nμ/ν).
Under 4Nν,4Nμ � 1, τ0 is much bigger than the relaxation
time (∼2N ) given in Eq. (20). This shows the separation of
the two time scales as expected.

Another way to look at the MFPT in Eq. (33) is to set x1 = 1
and obtain the substitution time of A1 genes. It differs from
the escape time above by taking into account the dynamical
details in the other attractive basin (a,1) as follows:

TMFP(0 → 1)

= 1

ν
+ 4Nμ

ν

∞∑
n=1

1

n + 1

n∏
k=2

(
k − 1 + 4Nμ

k

)

+ 4N (1 − 4Nμ)
∞∑

n=1

1

(n+ 1)(n+ 4Nν)

n∏
k=2

(
k − 4Nμ

k

)
.

(37)

The necessary condition for its convergence (ν > 0,μ < 1/

(4N )) has been discussed in Sec. IV B. In Appendix A we
show that the condition is also sufficient. Biologically, we
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FIG. 5. Comparison between two times the MFPT from 0 to a

(solid), our analytical approximation (dashed), the MFPT from 0
to 1 (point), the MFPT from 0 to a (dotted), and the simulated
escape time (crosses) of the discrete Wright-Fisher model under mu-
tation and genetic drift. Parameter setting: N = 100, μ = 0.000 05,
0 < 4Nν < 1.

expect that TMFP(0 → 1) > τ0, as a population would have
escaped from (0,a) before it reaches x = 1. This relation is also
mathematically demonstrated by Eqs. (35) and (37). Under
the limit 4Nν,4Nμ � 1, the two equations arrive at the same
estimation:

TMFP(0 → 1) ≈ τ0 ≈ 1/ν. (38)

Numerical comparisons of 2TMFP(0 → a), TMFP(0 → 1), our
approximation Eq. (36), and the escape time simulated from
the discrete model are given in Fig. 5.

In Fig. 5, the escape time is best approximated by
2TMFP(0 → a). TMFP(0 → 1) also approximates the results
well but is always bigger. The estimation TMFP(0 → a) is
obviously not a good estimation: This differs from the escape
analysis on a finite landscape, where τ is approximated by
T (0 → x1) with x1 ≈ a. The simulated escape time is always
between 2TMFP(0 → a) and TMFP(0 → 1). Figure 6 shows
the relations between the simulated escape time and different
MFPTs. For the given set of parameters, T (0 → 0.9) ≈ τ̂0.
Another observation is that 2TMFP(0 → a) is bigger (smaller)
than the simulated escape time when 4Nν is small (big). The
main reason is that the landscape is no longer symmetric when
ν �= μ (see Sec. VB for more discussions).

D. Models with weak selection

With the effects of selection, M(x) is usually not linear
dependent on the gene frequency of A1. The adaptive nature of
selection will drive a population monotonously to a fitness peak
on the classical fitness landscape. Under mutation and genetic
drift, a population is not always expected to evolve towards
a fitness peak but towards a potential peak [our Eq. (17)].
We study how the nonlinear selection interacts with mutation
and drift on the potential landscape. Particularly, we study
the biologically pertinent cases of weak selections where we
can also get analytical escape times [41,42], which was not
achieved in the previous method [8,30].
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FIG. 6. Comparisons between the MFPT from 0 to x1 (solid),
our analytical approximation of the MFPT (dashed), and the discrete
MFPT calculated from the master equation (square). The parameter
setting is N = 100, ν = 0.000 25, μ = 0.000 01. The saddle point
a = 0.4747. The shadow area above the line t = τ̂0 (the simulated
escape time of the discrete Wright-Fisher model) denotes that the
population (expectedly) has already escaped if the time falls into this
area.

Though f (x) no longer takes the linear form, the first
time scale can still be estimated by T1 ≈ 2NO(1) under weak
selection (4Ns � 1). This constraint makes sense for models
where the evolution is almost selection-free or the effective
population size is small. The general equation for the MFPT
under mutation, drift, and selection is obtained by substituting
Eq. (10) into Eq. (30) as follows:

TMFP(x0 → x1)

= 4N

∫ x1

x0

(1 − y)−4Nμy−4Nν[ω(y)]−2Ndy

×
∫ y

0
(1 − z)4Nμ−1z4Nν−1[ω(z)]2Ndz. (39)

The inner integral is no longer the standard incomplete B
function. If we can expand the fitness term [ω(y)]2N near the
singular state x = 0, an analytical approximation for the MFPT
can be obtained by combining the results with Eq. (37).

An example is the symmetric selection [8]. The fitness set-
ting is A1A1 : A1A2 : A2A2 = 1 : 1 − s : 1, where s presents
the relative heterozygote disadvantage factor. This is a typical
bimodal fitness scheme (that both A1A1 and A2A2 individuals
have higher fitness values than A1A2 individuals). We assume
the Hardy-Weinberg equilibrium, so the effect of selective
pressure can be described by the allele frequency [1]. The
average rate of change in x per generation by selection
alone (s � 1) is Ms(x) = −sx(1 − x)(1 − 2x). We have then
w = 1 − 2sx + 2sx2. With two-way mutations and genetic
drift, the landscape is as follows:

�(x) = (4Nν − 1) ln x + (4Nμ − 1) ln(1 − x)

− 4Nsx + 4Nsx2. (40)

The landscape with symmetric mutations is plotted in Fig. 1
case VI (cyan). We study the effects of weak selection on the
escape time on the basis of previous discussions. By expanding
e−4Nsx+4Nsx2

near x = 0, the escape rate λ0 = τ−1
0 is obtained
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as

λ0 = 1/(2 × TMFP(0 → a))

= 1

/[
8N

∫ a

0
e4Nsy−4Nsy2

(1 − y)−4Nμy−4Nνdy

×
∫ y

0
e−4Nsz+4Nsz2

(1 − z)4Nμ−1z4Nν−1dz

]
≈ ν/(1 + 1.23Nμ + 0.67Ns). (41)

Here a is the landscape valley of Eq. (40). We give numerical
comparisons among Eqs. (39) and (41), and discrete results in
Fig. 7. It can be noticed that our approximation also works for
4Ns ≈ 1.

We consider another model with frequency-dependent
selection and two-way mutations. We take the fitness scheme
A1 : A2 = 1 + s − tx : 1, where t and s are two arbitrary
constants [38]. Here the selective advantage of A1 over A2

is dependent on the A1 frequency x in a simple linear fashion.
This setting originally describes the haploid population but the
results can be readily extended to general diploid models. The
average fitness is w = 1 + sx − tx2. The potential landscape
under selection, mutation, and genetic drift is

� = φs + (4Nν − 1) ln x + (4Nμ − 1) ln(1 − x), (42)
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FIG. 7. Comparisons among half the escape rate (corresponding
to two times the MFPT) from 0 to a (solid), our analytical
approximations (dashed), the transition rate from 0 to 1 (point) and
from 0 to a (dotted), and the simulated escape rate (crosses) of the
discrete Wright-Fisher model under selection, mutation, and genetic
drift. Parameter settings: N = 50, ν = 0.000 25, μ = 0.000 01,0 <

4Ns < 1.

where φs denotes the contribution of selection as follows:

φs =

⎧⎪⎪⎨
⎪⎪⎩

2N ln |− tx2 + sx + 1| + 4Ns√−4t−s2 arctan −2tx+s√−4t−s2 (if s2 < −4t)

2N ln |− tx2 + sx + 1| + 2Ns√
4t+s2 ln

∣∣−2tx+s−√
4t+s2

−2tx+s+√
4t+s2

∣∣ (if s2 > −4t)

4N
(
ln

∣∣ s
2x + 1

∣∣ − 2
sx+2

)
(if s2 = −4t)

. (43)

Note that the potential landscape can no longer be obtained
from Eq. (10) here under frequency-dependent selection
[because now φs(x) �= ln w]. We get φs(x) by calculating the
effects of selection on M(x) as Ms(x) = (s − tx)x(1 − x)/
(1 + sx − tx2). If we further assume s,t � 1, there is
Ms ≈ (s − tx)x(1 − x), and the landscape is approximately
obtained as

� = 4Nsx − 2Ntx2 + (4Nν − 1) ln x

+ (4Nμ − 1) ln(1 − x). (44)

We can study the average substitution time of gene A1,
which can be approximated by TMFP(0 → 1). To maintain a
bistable system, we set 1/(4N ) > μ,ν. To take the expansion
we further assume 4Ns,4Nt � 1. The mean first passage time
is as follows:

TMFP(0 → 1) ≈ 1

ν

∫ 1

0
[1 + (4Nμ − 4Ns)y + 2Nty2]dy,

= ν−1

(
1 + 2Nμ − 2Ns + 2

3
Nt

)
. (45)

Here if we take t = 0 and μ = 0, the system would return to
the simplest case with no frequency-dependent selection and
reverse mutation [28]. Under this condition, the fixation time of
a beneficial or deleterious mutation is often studied. We check

the consistency of our results to the previous conclusions. The
substitution time in Eq. (45) becomes the following:

TMFP(0 → 1) ≈ 1 − 2Ns

ν
, (46)

From this result, the selective advantage s decreases the
substitution time approximately on a linear scale if 4Ns � 1,
consistent to the rate of substitution calculated under the same
settings without backward mutations (μ = 0) [1],

k = 1 − e−2s

1 − e−4Ns
× 2Nν ≈ ν

1 − 2Ns
, (47)

just the inverse of Eq. (46). If instead μ �= 0 or if there is
the frequency-dependent selection, the fixation probability is
incalculable and the classical method in Eq. (47) does not work.
Our Eq. (46) can still be applied in such cases, carrying the
meaning of general transition rate in the direction A1 → A2.

V. DISCUSSION

A. Comparisons with previous work

In the present work, we studied the bipeaked landscape
dynamics that has emerged from a typical stochastic popula-
tion model. We identified a two-time-scale evolution structure
from the complex probability change [28]. Particularly, we
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estimated the escape time from a log-divergent potential peak
and applied it to the Wright-Fisher model with weak mutations
and weak selections. This singular potential is essentially
induced by the strong genetic drift in the present model. The
effect of genetic drift is strong at middle states (x ≈ 1/2) and
weak at boundary states (x ≈ 0,1, even vanishing at x = 0,1),
a feature that differs substantially from the typical assumption
of constant weak noise that would result in Kramers’s classical
conclusions [14]. The resulted singular potential peak makes
it impossible to apply the classical results directly.

The present result shows that the escape time does not
necessarily have an exponential dependence on the potential
gap between peak and valley but is always dependent on the
partial normalization constant Zi in that attractive basin (see
Sec. VD). We note that there is no real conflict among the
results. In the finite-peak cases, the effect of Zi is dominated
by the potential gap [15]. In the singular-peak case, the effect
of Zi is distributed in the whole attractive basin and may
accumulate near the peak state. Near x = 0, the potential peak
diverges in a finite phase space (0,a), and the probability area
under the probability distribution curve turned out to be finite
and sensitive to the small system parameters (here ν or μ).
The original Kramers’s formula of escape time should be taken
special care when dealing with such cases.

Note that the escape rate [the inverse of Eq. (38)] is ap-
proximately the mutation rate and is nearly independent of the
population size under 4Nν � 1. The two effects of N (sharpen
the potential peak and strengthen the downhill stochastic force)
approximately cancels out under this condition. Equation (38)
coincides Kimura’s rate of gene substitution 2Nν × 1/(2N ) =
ν in the selection-free models [1,31]. Its inverse 1/ν gives
the expected time of the appearance of a mutation that is
destined to be fixed [38]. In many cases the appearance time
is used as the substitution time [1]. This happens under the
limit 4Nν � 1 where the actual time for the fixation process
[∼O(2N )] is negligible. For comparable ν and 1/(2N ), the
population size N will have significant effects on the transition
rate, and the substitution time 1/ν is no longer accurate. Our
result Eq. (35) generally shows the effect of population size
on the escape time. Moreover, Eq. (35) is obtained from the
diffusion equation, the functionality of which is not confined
by particular biological concerns. It can even be applied
under two-way mutations and frequency-dependent selection
(Sec. IVD), which makes the fixation probability of a new
mutant (and thus Kimura’s rate of substitution) incalculable.

Extending the typical rate formulas derived from the
diffusion equations in biology [30], the present results are
applicable to weak mutation and weak selection models,
because we do not make assumptions on the selection type. We
only require there to be two peaks on the potential landscape
(instead of two peaks on the fitness landscape; see Sec. VB for
details) or just the long-term bistability of the model. Another
typical method used in diffusion methods is the calculation of
the eigenvalue of the diffusion equation [8]. It has a constraint
that the deterministic potential

∫ x
M(x ′)dx ′ must be bimodal

(so is their “deterministic equilibria”; an example is the first
case in our Sec. IVD, where the selection cannot be very weak).
The method failed to approximate the transition rate under very
weak or zero selection (s < 4μ, or simply s = 0,4Nν < 1)
or if the selection is not bimodal. We have shown that the

system dynamics (or, to compare, “stochastic equilibria”) may
still be bimodal if the deterministic potential is not, due to
the strong genetic drift-induced noise [Eq. (3)]. Consistently
with the eigenvalue estimations in the discrete model [29], our
analytical result also gives an estimation for the long-term rate
toward the global equilibrium of the system.

B. MFPT and escape time

In general, these are two different concepts. The escape
time τ0 is closely related to the probability flow rate through
the saddle. An escaped population from (0,a) is expected
to be caught stable in another attractive basin (a,1). We
do not count in the cases in which a population comes
back to (0,a) immediately after it escapes. However, as the
absorbing boundary setting in Eq. (29) is not vigorous, the
MFPT is generally not exactly the escape time. There might
be considerable returning probability to the initial state after
first reaching a specific state x1 ∈ (a,1). Based on the present
landscape approach, we are able to discuss the MFPT-escape
time issue for the strong genetic drift cases.

In Eq. (29), the boundary x1 is not an ideal absorbing state,
and τ0 and TMFP(0 → a) may significantly differ, such as by a
factor of 2 (Sec. IVC). An intuitive interpretation is that, after
first reaching x = a, there is equal probability to go into (0,a)
or (a,1) (see Appendix B for more detailed discussions). From
our result in Figs. 5 and 7, the factor 2 is also an approximation
as the landscape is not axisymmetric to x = a.

On a landscape with narrow valley, the escape time is shown
to be approximated by some TMFP(0 → x1) with x1 ≈ a,a <

x1 < 1 [13]. It is not the case in the present model, as the
potential landscape here has a special shape with a wide valley
and sharp peaks (Fig. 1). The main difficulty of escape here lies
in overcoming the sharp peak (instead of crossing the valley)
where most probability densities are concentrated. Addition
information that can be read from Fig. 6 is that TMFP(0 → 1)
is generally bigger than the escape time. A population does not
have to reach x = 1 at the time of escape, and the escape time
from (0,a) does not take into account the actual dynamics
in the basin (a,1) [15]. Equation (35) is usually a better
approximation. The equivalent escape state turns out to lie
somewhere between the saddle and the end state (here near
x = 0.9, see the intersection of τ̂0 and the MFPTs in Fig. 6).

C. More on our potential landscape

The presently constructed landscape is consistent to the
physical energy function, though opposite in sign. This is in
adherence to the convention of biology. The directed force
f (x) on the landscape is shown to depend on the nonuniformly
distributed noise D(x) [see Eqs. (7) and (8)]. This indicates
the effect of random drift on population’s long-term evolution,
which also results in the N dependency of the potential
landscape. The landscape defined in this manner corresponds
to the potential function in the Boltzmann-type distribution at
steady state of Eq. (1). The temperature coefficient does not
correspond to the inverse population size in this sense, which is
in comparison with Ref. [24]. The observed two-time-scale dy-
namics (Figs. 3 and 4) verifies that the population dynamics are
faithfully described by the present landscape, even though the
biological fitness landscape ln w is not bimodal. Its coherency
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is also demonstrated in the limiting case of pure genetic drift as
shown in Fig. 1 case I (red). As shown in Sec. IIB, �(x) relates
to ρ(x,t = +∞) through the Boltzmann-Gibbs distribution
if Z < +∞ but is essentially a dynamical description of the
system. Its validity does not require a normalizable equilibrium
distribution (allowing Z = +∞).

The potential landscape Eq. (6) can be compared to the
classical fitness landscape, which presents only the effects
of selection. Other biological factors may generate various
evolutionary mechanisms on the fitness landscape, resulting
in nonadaptive movements [43]. It thus constrains the study
of bistability to strong selection models [30], excluding the
investigation of system bistability induced by other factors
(e.g., the strong genetic drift in the present case). The fitness
landscape might be corrected by other scalar functions such as
an entropy term [24]. The restriction of the fitness landscape
is also shown by lack of a unified description of different
biological factors, along with other controversies [19]. The
confusions include the inconsistency between biology and
dynamics. An example is the neutral (selection-free) model,
where population probabilities are not evenly distributed in
[0,1]. Genetic drift alone can result in directed (non-neutral)
evolution. These facts constrain the utility of fitness landscape
as a universal law in biology. The present potential landscape
may serve as a substitute for Wright’s original landscape that
more directly visualizes the evolutionary process in a globally
coherent way. In even higher-dimensional models, the present
landscape is also shown to be applicable [44].

An extension to the fitness landscape is the “deterministic
landscape” [8], which integrates all deterministic factors of
evolution but does not consider genetic drift. Thus, its shape
deviates substantially from the equilibrium distribution when
genetic drift is strong. It fails to describe the bistability
of the model under strong genetic drift, and the associated
approaches fail for such cases (see Secs. VA and IVD). Our
landscape approach instead describes the correct long-term
dynamics and supports the calculation of multiple time scales.
The key point here is that the nonuniform D(x) also contributes
to the directed evolution.

Another extension is the free fitness function, which is
expected to be maximized in the process of evolution [24].
However, the associated maximum entropy approximation
fails under weak mutations as the distribution function di-
verges near the two boundaries [45]. Moreover, it uses the
normalization constant Z as a generating function of system’s
macroscopic information and requires normal probability
distribution. It is not applicable when Z = ∞. When the
system is bimodal, the average quantities (mean-field method)
may not faithfully describe the system dynamics [45]. Our
present approach does not have certain constraints, and the
validity of our landscape construction and the associated
approaches is tested in such singular cases. An application
in population genetics is the study of Muller’s ratchet under
zero backward mutations [46].

D. Normalization constants and fixation

By taking ν = 0 in Eq. (36), we have τ0 = +∞. No escape
is expected to happen once a population “traps” into the
neighborhood of x = 0. Biologically, this corresponds to the

fixation of A1 gene as a result of the absence of A2 mutations.
This is also shown by the stationary distribution (see Fig. 1
case I, red) as a combination of the Dirac δ functions under
pure genetic drift [47],

ρ(x, + ∞) = (1 − 〈x0〉)δ(x) + 〈x0〉δ(1 − x). (48)

Here 〈x0〉 = ∫ 1
0 xρ(x,t = 0)dx gives the initial population

state. An observation is that the fixation state of the system can
be naturally derived from the present results of escape times:
Fixation happens when escape is not possible. In Eq. (30), the
impossibility of escape comes essentially from the infinity of
the incomplete B function B(y; 4Nν,4Nμ) (which becomes
the Dirac δ function) in Eq. (32). If we define a partial
normalization constant for each attractive basin as

Z0 =
∫ a

0
ρ(x, + ∞)dx, (49)

Z1 =
∫ 1

a

ρ(x, + ∞)dx, (50)

Note that Z0 is a shorthand of Z0(t = +∞) defined in
Eq. (24); Z1 = 1 − Z0 is similar. The mathematical condition
for the biological fixation at x = 0 (or x = 1) should be
Z0 = +∞, Z1 < +∞ (or Z1 = +∞,Z0 < +∞). If Z0 =
Z1 = +∞, both x = 0 and x = 1 are fixation states, corre-
sponding to the model with pure genetic drift. When combined
with previous discussions, we conclude that �(0) = +∞ (or
�(1) = +∞) does not necessarily imply fixation of A1 (or A2)
genes.

Another observation from the present results is the emerg-
ing of absorbing boundaries at the fixation state; the boundary
conditions “artificially” set by Ref. [47] are more naturally and
generally derived here. Note that there is previous discussions
of the boundary conditions based on MFPT alone [32].
Compared to previous work, our discussions are based on
the MFPT and the landscape, which gives the physically
meaningful escape time from the boundary states. The key
issue here is that the choice of the exit state is closely related
to the saddle location and landscape shape. Also, the confusing
last-step-to-fixation dynamics in the continuous Wright-Fisher
model [33] is coherently described by both the discrete and
continuous escape-time results here, in a way validating the
diffusion approximation even at the boundary states. Our last
comment is that unnormalizable distributions in the diffusion
model do not generate real problems for understanding
the original discrete model. It instead provides important
dynamical and equilibrium information of the system. We
summarize the above conclusions in Table II.

TABLE II. Summary of the observations in Sec. VD. Z0 and
Z1 are the partial normalization constants defined in Eqs. (49) and
(50). τ0 and τ1 are the respective escape times. The “Absorb.Bound.”
column gives where the absorbing boundary emerges.

Z0 Z1 τ0 τ1 Fixation Absorb.Bound.

< + ∞ < + ∞ < + ∞ < + ∞ N/A Neither
= + ∞ < + ∞ = + ∞ < + ∞ x = 0 x = 0
< + ∞ = + ∞ < + ∞ = + ∞ x = 1 x = 1
= + ∞ = + ∞ = + ∞ = + ∞ x = 0 or 1 x = 0,1
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E. Comments on the “stochastic tunneling”

In the study of a three-phase transition problem, a “stochas-
tic tunneling” effect was termed that allows transition from
one state to another, without passing through the middle
state [48]. In light of the present framework of potential
landscape and discussions of escape events, we commented
that “stochastic tunneling” might not be a proper term. There
the essential quantum-mechanical feature of the tunneling
effect does not exist. Quantum mechanics is tied to the
laws of wave mechanics going through under the potential
barrier (here the potential valley) [49,50]. A potential barrier
(valley) is not to be overcome but should be tunneled through,
which is classically impossible. Furthermore, the tunneling
effect is approximately temperature independent, while the
“stochastic tunneling” disappears when temperature decreases
to zero (stochastic effect vanishes). Actually, the first process
of fixation of the deleterious mutation would never happen
without noise. In the physical point of view, this process is a
classical saddle-passage escape event on a potential landscape.
The proper term might be reconsidered as “thermal activation.”
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APPENDIX A: CONVERGENCE OF EQ. (37)

Under ν > 0, the convergence of Eq. (37) relies on the
convergence of the sum

S =
∞∑

n=2

n∏
k=2

(
k − 1 + 4Nμ

k

)
1

n + 1
. (A1)

We use Raabe’s test for series convergence from standard
textbooks of real analysis. For 0 � 4Nμ < 1, we denote

cn =
n∏

k=2

(
k − 1 + 4Nμ

k

)
1

n + 1
. (A2)

Obviously cn is positive for all n > 0. First, we have

lim
n→∞

cn+1

cn

= 1. (A3)

We then calculate the Raabe terms

Rn = n

(
cn+1

cn

− 1

)
= (4Nμ − 2)

n

n + 2
. (A4)

Here 4Nμ − 2 is a constant less than −1. By taking the limit
n → ∞,

lim
n→∞ Rn = 4Nμ − 2 < −1. (A5)

The two conclusions in Eqs. (A3) and (A5) verify the
convergence of the partial sum Sn under 0 � 4Nμ < 1.

APPENDIX B: INTERPRETATION OF THE FACTOR 2

The choice of factor 2 is because a population will have 1/2
probability to be caught stable in the (a,1) basin after reaching
the valley point a. This is not always the truth, though, as valley
x1 = a is chosen as an ideal absorbing boundary (sink) rather
than a smooth distribution of sinks in (a,1) [15]. For the factor
of 2 to be exact, we need the landscape to be axisymmetric
near the valley. Asymmetry of the landscape far from the valley
state will bring higher-order errors to the factor of 2, which is
neglected for the present concern and needs further investiga-
tions. On the other hand, the error between 2TMFP and the simu-
lated escape time may also come from the diffusion approxima-
tion of the discrete model and the approximation of the MFPT.

One detailed interpretation of this factor 2 in a limiting
case is given below. Assume that the rates of uphill (∼T1)
and downhill [TMFP(0 → a), denoted here as Ta] movements
are well separated (here 4Nν,4Nμ � 1 so T1 � Ta). The
model can be considered as a three-state-transition process
among 0,a,1. Once a population reaches x = a in Ta , it has
probability 1/2 to fall into either 0 or 1 immediately in T1.
Once falling back to x = 0, it will wait another Ta to reach
x = a again; it then again has a 1/2 chance to reach x = 1 or
return to x = 0 immediately. Assume this process continues.
The expected time to leave x = 0 can then be obtained as
(neglect T1)

τ0 ≈ Ta × 1

2
+ 2Ta × 1

22
+ · · · + nTa × 1

2n
+ · · · = 2Ta,

(B1)

the same result as Eq. (35).

APPENDIX C: DISCRETE WRIGHT-FISHER PROCESS

The original Wright-Fisher model is discrete both in time
(number of generations) and space (number of copies of A1).
It considers the evolution of the probability distribution
function Pt (a vector of 2N + 1 elements) with time t . The t th
generation sampled 2N times to give the t + 1th generations.
The probability that these 2N trials of sampling a population
with i copies of A1 gene will give j copies of A1 gene is given
by the (i,j )th element of the transition probability matrix G,
defined by the binomial distribution as follows:

Gij = C2N
j p(i)j (1 − p(i))2N−j . (C1)

C2N
j is the number of combinations to choose j genes from

a gene pool of size 2N . p(i) is the probability of choosing
an A1 gene from the pool. To give the explicit form of p(i),
we denote y = i/(2N ). p(i) is determined by the biological
factors considered in the model. Here under genetic drift,
mutation, and selection,

p(i) = [(W11y
2 + W12y(1 − y))(1 − μ)

+ (W12y(1 − y) + W22(1 − y)2)ν]/[W11y
2

+ 2W12y(1 − y) + W22(1 − y)2] (C2)

is the probability of sampling an A1 gene in the popu-
lation gene pool. W11,W12,W22 denotes the fitness values
of A1A1,A1A2,A2A2 individuals, respectively. The system
evolves as

Pt+1 = PtG. (C3)
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In the simulation in Sec. IVC, the model is under mutation and
genetic drift, and the fitness values are chosen as W11 : W12 :

W22 = 1 : 1 : 1. In the first example of Sec. IVD, the fitness
values are W11 : W12 : W22 = 1 : 1 − s : 1.
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